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Abstract As seismic data collection continues to grow, advanced automated processing techniques for
robust phase identification and event detection are becoming increasingly important. However, the
performance, benefits, and limitations of different automated detection approaches have not been fully
evaluated. Our study examines how the performance of conventional techniques, including the Short‐Term
Average/Long‐Term Average method and cross‐correlation approaches, compares to that of various deep
learning models. We also evaluate the added benefits that transfer learning may provide to machine learning‐
based seismic applications. Each detection approach has been applied to 3 years of data recorded by stations in
East Antarctica, which contain both cryospheric and tectonic‐related seismic events. Our results demonstrate
that by integrating different event detection approaches with transfer learning, the strengths of each approach
can maximize seismic detection accuracy and reliability while also enhancing the completeness of associated
event catalogs. That said, model performance can vary, depending on the quality of the data set as well as the
data augmentation schemes and training strategies employed. Our results in East Antarctica provide new insight
into polar seismicity and demonstrate how automated event detection approaches can be optimized to
investigate seismic activity in challenging environments.

Plain Language Summary Given the large quantity of seismic data recorded for geologic
investigations, the manual identification of earthquake arrivals is becoming less feasible, and automated
detection approaches are becoming increasingly important. However, the benefits and limitations of different
detection techniques have not been fully evaluated. In this study, we examine a range of automated detection
approaches, applied to data recorded by seismic stations in Antarctica, to assess the performance of each
method. Additionally, an approach called transfer learning is examined to determine if it can improve the
accuracy and reliability of the automated detections. Our results demonstrate that by using a combination of
different automated detection approaches with transfer learning, more complete event catalogs can be
developed. Further, our findings highlight new seismic events in Antarctica and provide insights into both
geologic processes and ice‐sheet behavior.

1. Introduction
The accurate creation of seismic event catalogs for seismotectonic and glaciologic interpretation requires robust
phase identification, event association, and event detection; however, with the ever‐increasing availability of
seismic data, manual processing by human analysts is becoming less feasible. As such, automated processing
techniques are becoming increasingly important. Some event detection techniques, such as the Short‐Term
Average/Long‐Term Average (STA/LTA) method (Allen, 1978; Earle & Shearer, 1994), use relatively simple
algorithms and provide rapid results without the need for extensive data pre‐processing. Waveform based cross‐
correlation approaches, such as the matched filter (MF) technique (Chamberlain et al., 2018; Gibbons & Ring-
dal, 2006; Peng & Zhao, 2009; Shelly et al., 2007), can also be applied to STA/LTA generated earthquake
catalogs to identify new, closely located events with similar focal mechanisms to those in the initial catalog.
However, STA/LTA may not perform well for low signal‐to‐noise ratio (SNR) data, and cross‐correlation based
approaches can sometimes generate spatially biased event catalogs (Herrmann & Marzocchi, 2021; Schaff &
Beroza, 2004; Yoon et al., 2015). The shortcomings of these methods can also sometimes result in impulsive
transient signals or distant regional/teleseismic signals being erroneously identified as local earthquakes (e.g.,
Meng et al., 2012). In some cases, these challenges can be overcome using phase association algorithms, which
analyze triggers frommultiple stations to determine whether any combination displays arrival time sequences that
align with characteristic seismic event patterns (Myers et al., 2007).
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In recent years, advancements in machine learning techniques, coupled with the democratization of open‐source
software, have provided more sophisticated methods to automatically detect seismic events. In particular, con-
volutional neural networks (CNN), which perform a sequence of convolution, resampling, and non‐linear
transformations on raw waveform data, have shown promising results (Perol et al., 2018; Ross et al., 2018;
Wu et al., 2018; Y. Zhou et al., 2019; L. Zhu et al., 2019) when compared to more traditional techniques
(Chamberlain et al., 2018; Earle & Shearer, 1994; Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly
et al., 2007). CNN pickers are designed to provide the added advantage of identifying body wave phases on three‐
component seismograms, thereby simplifying earthquake association and relocation. However, machine learning
algorithms are complex, computationally demanding, and typically require optimization to avoid false‐positive
event detections.

To date, only a few studies have evaluated the performance of different automated detection approaches with
respect to one another or have attempted to combine detection techniques to achieve the best possible outcome
(Münchmeyer et al., 2022; Neves et al., 2024; Scotto di Uccio et al., 2023; Si et al., 2024; Woollam et al., 2022;
Yuan et al., 2023). Further, most of these previous studies have typically only examined select model pairs based
on one or a few training data sets (e.g., Han et al., 2023; Jiang et al., 2021; Perol et al., 2018; Vaezi & Van der
Baan, 2015), and they largely focused on small magnitude, tectonic‐related seismic events. Here, we develop
seismic event catalogs using the STA/LTA approach (e.g., Allen, 1978; Earle & Shearer, 1994), a template
matching detection method (e.g., Peng & Zhao, 2009; Shelly et al., 2007), and a machine learning‐based algo-
rithm called EQTransformer (EQT) (Mousavi et al., 2020). The catalogs developed with each technique are then
combined with a suite of deep learning models (Mousavi et al., 2020; Ross et al., 2018; Woollam et al., 2019; W.
Zhu & Beroza, 2019) through transfer learning: a technique that adapts a pre‐trained model to perform a new,
related task. Transfer learning can greatly enhance model adaptability and efficiency, even when data availability
for the target task is limited (Bornstein et al., 2024; Münchmeyer et al., 2020), but despite its potential benefits
(Bornstein et al., 2024; Chai et al., 2020; Lapins et al., 2021; Ni et al., 2023; Shi & Denolle, 2023), its adoption in
seismic studies has not been as rapid or as extensive as in other domains of deep learning research. By integrating
different event detection methods with transfer learning, we aim to utilize the strengths of each approach to
maximize seismic detection accuracy and reliability. Our analysis includes a detailed comparison of the original
and updated deep‐learning models, using a range of metrics that evaluate each method's ability to accurately
determine the onset time of phase arrivals, to reliably classify phases as P‐ or S‐waves, and to identify events
while minimizing the number of false positives. The detection approaches are applied to a unique data set that is
comprised of both tectonic earthquakes and cryospheric seismic events (i.e., icequakes) (Podolskiy & Wal-
ter, 2016). Collectively, our findings demonstrate that applying combined detection approaches to complex data
sets enhances the completeness of the associated event catalog. Considering the variety of recent automated event
detection algorithms that have become available, such as EQCCT (Saad et al., 2023), OBSTransformer (Niksejel
& Zhang, 2024), PickBlue (Bornstein et al., 2024), ARRU (W. Y. Liao et al., 2021), and RED‐PAN (W. Y. Liao
et al., 2022), we emphasize that our approach can be extended to evaluate other workflows.

2. Data and Methods
Broadband seismic deployments across the Antarctic continent have dramatically increased over the past several
decades (e.g., Anandakrishnan et al., 2000; Anthony et al., 2015; S. E. Hansen et al., 2015; Heeszel et al., 2013;
Pyle et al., 2010), providing a valuable and challenging test data set for automatic event detection. Seismic events
in Antarctica are not only associated with tectonic sources (e.g., Lough et al., 2013, 2018; Lucas et al., 2021;
Rowe et al., 2000) but are also caused by other natural phenomena, such as iceberg calving signals (e.g., X. Chen
et al., 2011; Riel et al., 2021; Winberry et al., 2020; Zoet et al., 2012) or ice‐stream slip (e.g., Guerin et al., 2021;
Hudson et al., 2023; Lucas et al., 2023; Nettles & Ekström, 2010;Walter et al., 2011, 2015;Winberry et al., 2014),
which are collectively classified as icequakes. Our study focuses on a subset of seismic data recorded by 20
stations deployed in the Victoria Land region of East Antarctica (Figure 1), which provide continuous seismic
recordings for several years. Most of these stations (15) were part of the Transantarctic Mountains Northern
Network (TAMNNET), which operated between 2012 and 2015 (S. Hansen, 2012; S. E. Hansen et al., 2015);
however, we also incorporated data from three additional networks (ER, GT, and YT; Figure 1; ASL/
USGS, 1993;Wiens et al., 2007). The mean distance between stations is approximately 120 km; however, stations
along the main TAMNNET profile (Figure 1) are more closely spaced, with an average separation of about 30 km.
During the initial year of deployment, several TAMNNET stations (APRL, BEBP, CASY, FOOT, and GRAW)
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experienced operational interruptions during the coldest winter months due to
a programming issue in the data acquisition system, and the seismometer at
station KNYN malfunctioned (S. E. Hansen et al., 2015). Despite these early
challenges, corrective measures were implemented, and the average data
recovery rate over the duration of the deployment averaged approximately
95%. None of the other examined stations (Figure 1) experienced significant
outages during the time period examined. This data set allows us to provide
unique constraints on polar seismic activity and to evaluate automated event
detection performance in a region with limited station coverage.

We have developed a comprehensive workflow to assess the performance of
different automated event detection techniques (Figure 2). Three different
approaches, including the STA/LTA, MF, and a machine learning applica-
tion, were applied to the seismic data recorded by the East Antarctic stations
(Figure 1) to create three different starting catalogs. Each catalog was then
used to fine‐tune a series of deep learning models via transfer learning, and
their performance was evaluated with various metrics. The fine‐tuned deep
learning model that worked best for our Antarctic data set was then applied to
update the three catalogs, and the events were relocated using a uniform
velocity model. Each analysis step is described in detail in the following
sections.

3. Automated Detection Approaches
As shown in Figure 2, three different automated event detection approaches
were initially evaluated by our study, including the STA/LTA method, the
MF technique, and a machine learning‐based approach using the EQT algo-
rithm (Mousavi et al., 2020). The following subsections highlight the con-
tributions and limitations of each approach as they are applied to our East
Antarctic data set (Figure 1).

3.1. STA/LTA Method (SL Catalog)

The STA/LTAmethod (Allen, 1978; Earle & Shearer, 1994), which is used to construct our SL catalog (Figure 2),
detects high‐frequency events in continuous data by identifying signals that have a mean energy ratio above some
specified threshold. The STAwindow contains the dominant frequency of the events the algorithm aims to detect,
while the LTA window contains mostly background noise, which should exceed the period of the lowest fre-
quency seismic signal of interest (Trnkoczy, 2009). It is worth noting that each LTA window contains different
noise values. In continuous data, a trigger is declared when the STA/LTA ratio at any sample point surpasses a
pre‐defined threshold, indicating that an event is possibly occurring (Allen, 1978; Baer & Kradolfer, 1987). The
algorithm remains in this triggered state until the ratio decreases below a specified trigger‐release threshold
(Figure 3). One of the strengths of the STA/LTA method is that it does not require any prior knowledge about an
event's waveform nor its source (Yoon et al., 2015); however, it does have limitations. For instance, S‐waves may
not be accurately detected if they arrive within the P‐wave coda, and this can be problematic because S‐waves are
important when trying to determine the depth and origin time for an earthquake. The STA/LTA method is also
highly sensitive to the level of noise in the data, and it may not performwell with dense earthquake sequences and/
or emergent arrivals (Schaff & Beroza, 2004).

For our study, we designated short‐term and long‐term window lengths of 0.5 and 8.0 s, respectively, and we set
the SNR trigger and trigger‐release thresholds to 5 and 2.5, respectively (Figure 3). Additionally, as part of the
STA/LTA application, the waveforms were band‐pass filtered between 0.5 and 4 Hz. Detections were associated
with the Antelope dbgrassoc association module (BRTT, 2011), using a pre‐computed travel‐time grid based on
the IASP91 reference velocity model (Kennett & Engdahl, 1991), and events were declared if they were recorded
by at least four stations. Between 2012 and 2014, 560 events were detected using the STA/LTA approach and
automatic association, thereby forming our SL catalog (Figure 2). All phase arrivals were then manually reviewed
using a variety of band‐pass filters (e.g., 2–5, 2–8, and 2–10 Hz), and the phase picks were adjusted, as needed.

Figure 1. Map highlighting the examined seismic stations in Victoria Land,
East Antarctica. Light gray triangles denote TAMNNET stations (S. E.
Hansen et al., 2015), and dark gray triangles denote stations from other
networks. Station names are also provided. The location of the main map in
relation to the rest of Antarctica is highlighted in the inset on the lower left
(dark gray polygon).

JGR: Machine Learning and Computation 10.1029/2024JH000185

HO ET AL. 3 of 21

 29935210, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000185 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [19/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



These additional processing steps allowed us to refine our SL catalog of high‐quality events with well‐determined
phase arrivals.

3.2. Matched Filter Approach (MF Catalog)

TheMF technique, also known as template matching or network‐based waveform cross‐correlation (Chamberlain
et al., 2018; Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007), provides another approach to
automatically detect seismic arrivals, which is based on waveform similarity. Pre‐defined template waveforms are
cross‐correlated with continuous data over successive windows, and signals exceeding a specified correlation
threshold are identified as detections (Figure 4). Generally, the MF approach performs better than the STA/LTA
method (Section 3.1) when dealing with low SNR data. However, since the template events are often manually
determined, the MF method can be time consuming during its initial stages when building the template catalog (if
one does not already exist from a regional seismic network or other source). Furthermore, since the approach
relies on waveform similarity, seismic signals that differ significantly from the template events may go unde-
tected, leading to an incomplete catalog (Cianetti et al., 2021; C. Li et al., 2018; Yoon et al., 2015).

Using EQcorrscan (Chamberlain et al., 2018), all identified events in the SL catalog were treated as template
events (Figure 2), which were cross‐correlated with the band‐pass filtered (2–5 Hz) continuous data to identify
additional seismic signals (Figure 4). Several considerations led to our 2–5 Hz band‐pass filter selection. Prior
Antarctic investigations (e.g., Bentley & Kohnen, 1976) have demonstrated that higher frequencies may become

Figure 2. Flowchart summarizing the different automated seismic detection techniques examined in our study and the
associated analysis steps.
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scattered by the ice sheet and thus incoherent. For example, Zoet (2009), who identified repeating seismic events
near David Glacier, noted that their events primarily exhibited frequencies between 3 and 6 Hz. Similarly, Lucas
et al. (2021) reported that most of the seismic events they identified near the grounding zones of Pine Island and
Thwaites Glacier had dominant frequencies between 1 and 5 Hz. The amplitude spectra for our data fall within a
comparable frequency band (Figure S1 in Supporting Information S1). Including higher, more incoherent fre-
quencies (i.e., noise) when applying template matching can reduce the detection performance. To validate the
effectiveness of our selected 2–5 Hz frequency band, we also ran EQcorrscan on a subset of our data (April–May
2014) using a broader, 2–10 Hz band‐pass filter. The broader filter resulted in a lowerMF detection rate, with only
73 events identified in the examined subset compared to the 99 events found with the chosen filter. Again, this is
likely due to increased noise levels at higher frequencies resulting from ice sheet (Zoet, 2009).

Each template event was defined by the portion of the waveform 0.5 s before the event's P‐wave arrival and 6 s
after its S‐wave arrival (Peng et al., 2014). The templates were shifted by 0.025 s (1 sample) increments through
the continuous waveforms, and correlation coefficients were computed for each increment. Mean correlation
coefficients were then determined by stacking the coefficient values across all stations and components
(Figure 4). The relative quality of each cross‐correlated, matched waveform was evaluated using the median
absolute deviation (MAD; Shelly et al., 2007), which is a measure of dispersion calculated as the median of the
absolute difference between each data point for the mean correlation coefficient. The MAD value helps to es-
timate the variability in data distribution due to uncorrelated noise, thereby providing a robust measure to identify
outliers. For a normally distributed data set, the standard deviation is 1.4826 times the MAD (Hampel, 1974). Due
to the noisy nature of real seismic data and the relatively long‐period bandpass chosen for this project, a con-
servative threshold of 12 times the MAD was chosen, and signals that exceed this MAD value are identified as
positive event detections (Figure 4; e.g., Skoumal et al., 2015a; Yao et al., 2021). Theoretically, this threshold
corresponds to about one false‐positive detection per year (Z. Li et al., 2018; Skoumal et al., 2014, 2015b). It is
also important to note that previous studies have shown the MF technique can detect signals buried in seismic
noise (Z. Li et al., 2015; Shelly et al., 2007; Yao et al., 2021). As such, new detections should not be dismissed
solely because the events are below the background noise level.

Figure 3. Example illustrating Short‐Term Average/Long‐Term Average (STA/LTA) detection thresholds. The upper panel
shows an event waveform that was detected by the STA/LTA approach, and the lower panel shows the STA/LTA ratio for the
triggered event. The seismogram was band‐pass filtered between 0.5 and 4 Hz. Pink lines denote the trigger threshold (5) and
trigger time; blue lines denote the trigger release threshold (2.5) and corresponding time.
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A time domain, phase‐pick SNR threshold was also applied to further ensure robust detections. For a given phase,
the SNRwas calculated by taking the maximum amplitude of the signal window and dividing it by the root‐mean‐
square of the noise window. The noise windows start 6 s before the phase of interest, and both the signal and noise
windows had lengths of 5.5 s (Figure S2 in Supporting Information S1). The SNR threshold was subsequently
determined by comparing the pick‐specific SNR values obtained from all detected picks for each seismic event.
This additional processing step is not only important for robust event detections, but it also helps to remove
unwanted signals, such as teleseismic events that originate from distant earthquakes. Sometimes teleseismic
signals can be mistakenly detected in MF catalogs for local events, and this can adversely affect the accuracy of
local event detections because teleseismic events have unique seismic waves and frequency contents (Waldhauser
& Schaff, 2007). We determined that maintaining a SNR greater than 2.0 for both the P and S picks (Figure S2 in
Supporting Information S1) effectively helps to limit the influence of teleseismic events and reduces the number
of false detections. With the MAD and SNR criteria applied, our MF catalog includes 4,577 local events
(Figure 2).

Figure 4. (a) Mean cross‐correlation coefficients (CCC) determined by matching a template event, which occurred at
06:13:14 on 8 December 2012, against a full day (8 December 2012) of continuous data. Dots denote detections whose CCC
values exceed the detection threshold, which is 12 times the MAD (red dashed line). The orange dot marks the detected event
shown in panel (b). (b) Examples illustrating waveform cross‐correlation. Template waveforms (red) are plotted on top of the
continuous data (black), highlighting detected events from the matched filter approach. Both the template and continuous
waveforms were band‐pass filtered between 2 and 5 Hz. Station names and components are indicated on the right.
Amplitudes have been normalized so their absolute maximum values are equal to one. This was done to better illustrate the
waveform comparisons.
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3.3. Machine Learning Approach (ML Catalog)

In addition to the STA/LTA and the MF techniques, we also utilized EQT, a machine learning‐based signal
detector and phase picker that was trained on a diverse seismic data set (Mousavi et al., 2020), and this was used to
create our third (ML) event catalog (Figure 2). Further details about EQT and its architecture are provided in
Section 4.1. We implemented the EQT picker within the easyQuake Python package (Walter et al., 2021) to
identify P‐ and S‐wave picks within the continuous data. The easyQuake associator, which is a modified version
of PhasePApy (C. Chen & Holland, 2016), was used to aggregate pick information and declare event detections.
Probability thresholds of 0.1, 0.1, and 0.3 were specified for the P‐wave picks, S‐wave picks, and event detections,
respectively. Before detection, the waveforms were band‐pass filtered between 1.0 and 45.0 Hz, a feature that is
built into EQT. In total, 1,728 events were detected in the East Antarctic data set, which compose our initial ML
catalog (Figure 2). It should be noted that this catalog is distinguished from those derived from transfer‐learning in
later sections because it was generated using phase picks that were based on the original model and parameters
specified by Mousavi et al. (2020).

4. Transfer Learning
Each of the catalogs described in Sections 3.1–3.3 were used in our transfer learning process (Figure 2). As
mentioned in Section 1, transfer learning is a technique where a pre‐trained model and its architecture are used as
the starting point to develop a new machine learning model. That is, instead of retraining an entire model from
scratch with randomly initialized parameters or different model architecture, a strategy called fine‐tuning is
employed, where the original model and its architecture serve as the starting point, and training continues with
newly added data, thereby refining the model (Pan & Yang, 2010). Transfer learning not only leads to better
model performance, but it also overcomes some of the limitations of traditional models that assume training and
testing data sets are independent and are identically distributed (C. Tan et al., 2018).

The effectiveness of transfer learning has been proven in various fields (Long et al., 2013, 2015; Pan et al., 2011),
and while its adoption within the field of seismology has been relatively limited so far, the technique demonstrates
promising potential. For instance, L. Zhu et al. (2019) used a CNN‐based Phase‐Identification Classifier (CPIC),
which was initially trained on a data set with 30,146 labeled phases from the aftershock sequences of the 2008MW

7.9 Wenchuan earthquake, to develop a more complete aftershock catalog for the same area. Additionally, when
fine‐tuned on a smaller data set from Oklahoma, the CPIC achieved 97% accuracy. This study highlights the
potential for transfer learning applications to identify events in regions with no or few labeled phases. In a
different study, Chai et al. (2020) enhanced the capabilities of the PhaseNet model (W. Zhu & Beroza, 2019),
which was originally trained on data from regional seismic networks, to efficiently handle microseismic data from
South Dakota. About 3,600 three‐component seismograms and associated manual picks from the South Dakota
data set were used in the transfer learning process, and the performance of the retrained model exceeded that of the
original PhaseNet model by over 10% in terms of precision and recall (see Section 4.3). Compared to human
expert detections, 32% fewer P‐wave picks were made, but the fine‐tuned Chai et al. (2020) model identified 48%
more S‐wave picks.

We implemented our transfer learning process with Seisbench, a toolbox for machine learning in seismology
(Ho, 2024; Münchmeyer et al., 2022; Woollam et al., 2022). Each of our three event catalogs (Sections 3.1–3.3)
were used to fine‐tune a range of deep learning models, including PhaseNet (W. Zhu & Beroza, 2019),
BasicPhaseAE (Woollam et al., 2019), EQT (Mousavi et al., 2020), and the Generalized Phase Detection
(GPD) model (Ross et al., 2018), each of which are more fully described in Section 4.1. We acknowledge that
other automated event detection algorithms are available (Bornstein et al., 2024; W. Y. Liao et al., 2021, 2022;
Niksejel & Zhang, 2024; Saad et al., 2023), which could be applied to our data set, but we have focused on the
four selected models given their distinct yet interrelated approaches to seismic signal processing. Additionally,
these four models share a common approach in terms of pre‐processing the seismic data. Regardless of their
specific architectures or use cases, they all rely on uniformly sampled data, typically at 100 Hz. If the original
data has a different sampling rate, it is resampled to ensure uniformity. The data windows used by these models
vary in length, but they all incorporate multiple types of seismic signals, including P‐waves, S‐waves, and
noise.
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4.1. Deep Learning Models

The PhaseNet CNN (W. Zhu & Beroza, 2019) was developed as a U‐Net architecture, which functions as an
encoder‐decoder mechanism that pulls significant features from input data and subsequently expands them to
generate predictions of equivalent size outputs (Ronneberger et al., 2015). While the U‐Net was initially created
for a broad range of image processing applications, this approach has been adapted for earthquake phase
detection. Unfiltered three‐component seismograms are sampled using 30 s windows that include both P‐ and S‐
wave arrivals, and these samples serve as the input for PhaseNet. The waveform data are then processed through
an iterative down‐sampling and up‐sampling procedure. During down‐sampling, the encoder reduces the
dimensionality of the raw seismic data and extracts essential features associated with the seismic phase arrivals.
The condensed information provided by the encoder is then increased in dimensionality through up‐sampling by
the decoder, which converts the information into detailed probability distributions for P‐waves, S‐waves, and
noise at each point in time (Goodfellow et al., 2016; W. Zhu & Beroza, 2019). For seismic applications, PhaseNet
was originally trained and evaluated using 779,514 waveforms containing labeled P‐ and S‐wave arrivals from
local earthquakes recorded in northern California (W. Zhu & Beroza, 2019).

BasicPhaseAE, which is another U‐Net‐like CNN phase detector, employs three 6 s input windows, with each
window sampling an individual, unfiltered component (Woollam et al., 2019). The structure of BasicPhaseAE is
similar to PhaseNet, but it differs in a few aspects. BasicPhaseAE uses smaller filter sizes and omits convolutions
without stride, which refers to the step size that the filter matrix moves across the input matrix during the
convolution process. In addition, BasicPhaseAE lacks residual connections, which are essentially shortcuts or
bypass routes that enable the gradient to be back‐propagated directly to earlier layers (Münchmeyer et al., 2022;
Woollam et al., 2019). The input data, which consists of labels or classes of seismic data (e.g., P‐waves, S‐waves,
noise), undergo several transformations. Convolutional operations first extract the characteristic features for each
class. During training, the model uses a designated 6 s window of data that is then divided into sequential sub‐
windows, each 0.4 s in length. The sub‐windows are randomly shuffled to prevent the CNN from learning
irrelevant temporal patterns. Extracted features then undergo multiple resampling stages, with a rectified linear
unit activation function applied at each stage. The final architecture comprises three convolutional layers and
three up‐sampling layers. The convolutional layers isolate and extract specific waveform patterns while the up‐
sampling layers enhance the resolution of these patterns. The network ultimately determines the probability of a
P‐wave, S‐wave, or noise for every time sample in the input window. BasicPhaseAE was initially trained and
evaluated using 11,000 waveforms from earthquakes located within the Iquique region in northern Chile
(Woollam et al., 2019).

The GPD model is a phase identification CNN with six layers, including four convolution layers and two fully
connected layers (Ross et al., 2018). Rectified linear units serve as the activation function for each layer, and batch
normalization is applied throughout. GPD operates on data that have been high‐pass filtered at 2 Hz, with a short
4 s input window that advances five samples (0.05 s) after each prediction to create a new, slightly overlapped 4 s
window for the next prediction (Münchmeyer et al., 2022). Each advanced window is then classified as a P‐wave
arrival, S‐wave arrival, or noise. The GPD model was originally trained and evaluated using 4.5 million three‐
component seismic records, evenly distributed amongst P‐ and S‐wave seismograms and noise (Ross
et al., 2018). Using a multi‐class cross‐entropy loss for training, the GPD model has been shown to effectively
detect and identify seismic phases in various data sets (Münchmeyer et al., 2022; Woollam et al., 2022).

EQT is a model designed for simultaneous seismic event detection, phase identification, and onset timing
determination. This model was originally trained on a portion of the STEAD data set (Mousavi et al., 2019), a
global collection of 1.2 million hand‐labeled earthquake and noise waveforms. EQT operates on 60 s windows of
1.0–45.0 Hz band‐pass filtered, three‐component seismic data. Its architecture comprises a deep encoder and three
separate decoders, and it integrates convolution, long short‐term memory units, residual connections, and
attention mechanisms (Mousavi et al., 2020). The encoder processes the seismic data into high‐level contextual
representations, while the decoders convert these representations into probability sequences for events as well as
for P‐ and S‐wave detections. LSTM, which resembles human auditory memory processing, and attention
mechanisms, which simulate selective focusing in high‐resolution areas, work in tandem to enhance the model's
performance (Gers et al., 1999). The attention mechanisms function on two levels: global for earthquake events
and local for phases within those events. During training, EQT employs data augmentation techniques, such as
adding Gaussian noise, introducing gaps, and removing channels, which are implemented to enhance the model's
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robustness, teaching it how to handle various real‐world data imperfections and irregularities. This helps to
improve its overall performance and generalization ability (Mousavi et al., 2020).

Each of the above models has a different level of complexity, adaptability, and suitability for seismic data sets. For
example, since BasicPhaseAE lacks residual connections, which are shortcuts that skip one or more layers to help
train deep neural networks, its learning efficiency may be lower compared to PhaseNet (Münchmeyer
et al., 2022). Compared to EQT, GPD is much slower, but it requires less memory. Further, the sophisticated EQT
architecture and its comprehensive functionality may require more computational resources for complex ana-
lyses. We evaluate the performance of each model in relation to one another using our East Antarctic catalogs
described in Sections 3.1–3.3, but it should be emphasized that the most suitable model for a given investigation
depends on the type of data, the available processing time, and the computational resources available. We did not
evaluate the relative computational performance of the specific algorithms in this study.

4.2. Applying Transfer Learning to the East Antarctic Catalogs

Each of the pre‐trained models described in the previous section were fine‐tuned via transfer learning using each
of the event catalogs (Sections 3.1–3.3). The SL, MF, and ML catalogs contain a total of 1,536, 13,731, and 5,388
waveform segments, respectively. The metadata for each catalog were assembled into a QuakeML‐formatted file,
and we also developed HDF5‐formatted files by combining the event metadata with the waveforms, similar to the
STEAD data set format (Mousavi et al., 2019), for inclusion into Seisbench (Ho, 2024; Woollam et al., 2022).
Each catalog was divided into a training subset, which is composed of 70% of the data, a validation subset, which
contains 15% of the data, and a testing subset, which includes the remaining 15% of the data. The training subset
was used to adjust the model's weights and biases during the transfer learning process, while the validation subset
was used to fine‐tune the model's hyperparameters. The validation subset was also essential in determining which
model iteration performed the best, using the parameters described in Section 4.3. Once the optimal model
configuration was identified based on the validation subset's results, the updated model was then evaluated on the
testing subset. The final, reported results (Section 5) are based on this evaluation of the testing subset, thereby
ensuring an unbiased assessment of each models' performance on unseen data.

Using the Münchmeyer et al. (2022) data augmentation techniques within SeisBench (Woollam et al., 2022), we
built training pipelines, which are a series of steps that prepare and transform the waveform data for model
training. Since our waveforms are long compared to each aforementioned model input length, a two‐step
approach was employed for window selection. First, for two‐thirds of the training subset, windows were
selected to ensure that they contained at least one labeled pick. For the remaining one‐third, the windows were
randomly selected from the entire waveform, and they may or may not include labeled picks. This approach
guarantees that the training subsets are not overwhelmed by noise samples, which is particularly important for
models with short input windows (e.g., PhaseNet, BasicPhaseAE, GPD). Labels for the P‐ and S‐wave pick
probabilities were directly output from the original models. Further, the same type of data augmentations used
during training by EQT (Section 4.1; Mousavi et al., 2020) were incorporated with different probabilities to
regularize our training process and to improve model performance. Specifically, duplicate seismic signals were
inserted into empty trace sections with a probability of 0.3, meaning that for a given trace, there is a 30% chance
that this augmentation will be implemented. Similarly, randomGaussian noise (probability: 0.5) and random gaps
(probability: 0.2) were introduced, channels were removed (probability: 0.3), and waveforms were randomly
shifted. The same approach was also applied to the validation subset.

Additionally, as part of the transfer learning process for each catalog, we employed the Adam optimizer (Kingma
& Ba, 2014), which efficiently updates the model parameters to minimize the error between predicted and actual
values. A corresponding learning rate of 0.001 was selected, which controls the magnitude of changes made to the
model parameters during updates and ensures a steady convergence without overshooting (i.e., where the model
might skip over the optimal parameters). Further, a batch size of 256 was used in the optimizer, which means that
256 training samples were processed together during each iteration. This helps to balance computational effi-
ciency and the quality of the model's gradient estimation (Coleman et al., 2017; Smith, 2018). Early stopping was
also employed to obtain an optimal model. This strategy halts the training when the validation loss (a measure of
prediction error) throughout the entire training subset fails to improve after 10 successive cycles (epochs). The
learning curves for each catalog and for each examined deep learning model are shown in Figure S3 in Supporting
Information S1.
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4.3. Evaluating Model Performance

To evaluate each fine‐tuned, deep learning model's ability to differentiate between seismic events and noise,
we adopted the approach of Münchmeyer et al. (2022). First, a 30 s window of a random seismic waveform
from either the validation or testing subset is analyzed to determine if it contains an event onset (i.e., a first
arriving seismic wave). Noise samples are also extracted from the window using labeled noise traces, if
present. Otherwise, the noise sample is defined based on the presence or absence of P‐wave and S‐wave
arrivals. That is, windows containing neither P‐ nor S‐wave arrivals are labeled as noise, while those with
either or both are labeled as an event. The event and noise labels were used as “ground truth” to compare with
our models' predictions.

A variety of metrics were used to evaluate the performance of each model. First, to assess a model's ability to
accurately identify event onsets while minimizing false positives, we examined the receiver operating char-
acteristics (ROC), the area under the curve (AUC), and the F1 score. The ROC describes the true and false
positive rates across all possible detection thresholds, allowing for different trade‐offs between these rates,
depending on the application scenario (Fawcett, 2006). For example, in early earthquake warning systems, a
high true positive rate is important to ensure timely alerts, even if it means getting some false alarms (Meier
et al., 2020). Alternatively, in a tomography research setting, where detection precision might be prioritized,
reducing false positives could be more important, even if it means potentially missing some weaker seismic
events. An example ROC curve is shown in Figure S4 in Supporting Information S1. The AUC is a single
value that defines the area under the ROC curve. It quantifies the overall ability of the model to distinguish
between positive and negative classes. An AUC of one indicates a perfect model, meaning the model can
identify all events correctly without any false positives. Conversely, an AUC of 0.5 represents a random
model (Hanley & McNeil, 1982; Figure S4 in Supporting Information S1). The F1 score is the harmonic mean
of the precision (i.e., the number of correct detections among all detections) and recall (i.e., the number of
detections among all possible detections). It serves as a combined measure of the model's sensitivity and
specificity. As part of the transfer learning process, the AUC value is selected to optimize the F1 score,
thereby fine‐tuning the model to achieve an optimal trade‐off between the false positive rate and the true
positive rate.

In order to measure each model's binary classification performance, we used the Matthews Correlation
Coefficient (MCC). It is ambiguous to assign P‐ and S‐wave phases as positive and negative classes, and the
MCC is insensitive to class assignment (Chicco & Jurman, 2020; Matthews, 1975; Münchmeyer
et al., 2022). We analyzed 10 s windows containing exactly one phase arrival to determine if that arrival is a
P‐ or an S‐wave. The MCC is calculated as the correlation coefficient of the confusion matrix, and its value
ranges from − 1 (total disagreement) to 1 (full agreement). Even in cases of class imbalance, the MCC
provides an appropriate measure for binary classification performance (Münchmeyer et al., 2022;
Powers, 2011). Further, the MCC value was selected to optimize the phase threshold, which is used to
calibrate the P‐ and S‐wave pick probability thresholds. The pick probability indicates the likelihood of a
specific data point corresponding to a seismic phase arrival (i.e., a P‐ or an S‐wave signal), where a higher
probability directly correlates with a heightened level of confidence from the model regarding the presence
of an arrival at the identified data point. For the P pick threshold, we multiplied the detection threshold by
the square root of the phase threshold. This adjustment enhances the P‐wave detection sensitivity and
improves identification of these arrivals. For the S pick threshold, we adopted a more conservative approach,
dividing the detection threshold by the square root of the phase threshold. This approach was taken to
minimize the risk of false positives.

Finally, we evaluated each model's ability to accurately determine the onset time of phase arrivals within a
given catalog. Using the same 10 s window used for the MCC assessment, we calculated the pick residuals,
which are the differences between the transfer‐learning‐based pick times and the labeled pick times from the
validation subset. The residual distribution is analyzed using both the root‐mean‐square error (RMSE) and the
mean absolute error (MAE). Lower values of RMSE and MAE indicate greater accuracy in predicting the
phase arrival onset times. Together, these provide a comprehensive evaluation given their different perfor-
mance, with RMSE being sensitive to outliers and MAE being less sensitive to them (Willmott &
Matsuura, 2005).
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5. Results of Transfer Learning
The performance metrics (Section 4.3) used to evaluate the four deep learning
models (Section 4.1), which were each fine‐tuned using the catalogs described
in Sections 3.1–3.3, elucidate the effects of transfer learning, and these
metrics are summarized in Tables 1–3. Generally, transfer learning has a
positive effect on all models, as is evident from the AUCmetrics, for example,
The most dramatic change was observed for the MF catalog and the Basic-
PhaseAE model, where the AUC increased from 0.4 to 0.8. That said, even
models like GPD that already had a high AUC value (0.8) saw an increase
(0.9). These results highlight the benefits of transfer learning. However, it is
important to consider how each model defines an event detection. For
instance, EQT needs both P‐ and S‐wave labels to declare a detection within
the seismogram time series, while GPD and PhaseNet do not. For scenarios
where data sets might lack certain labels, such as in our SL and MF catalogs,
this could lead to reduced performance, as reflected in the metric results.

The RMSE and MAE metrics were reduced for both P and S picks across
all catalogs, again indicating improved performance from the fine‐tuning
and transfer learning. Among all the models, EQT had the lowest of

these metrics, indicating it had the highest pick accuracy. However, GPD also displayed significant im-
provements in RMSE and MAE and closely followed EQT across all catalogs (Tables 1–3). As for the MCC
metrics, where higher values indicate better classification performance, every model exhibited a MCC rise
following transfer learning. Based on the mean and standard deviation of each metric across the four examined
models (Tables 1–3), the P and S picks are notably better classified in the MF catalog, followed by the SL and
then the ML catalog. These variations might be due to the diverse waveforms within each starting catalog that
were then employed in the transfer learning process. For example, the starting ML catalog was generated
using EQT, which was only trained with earthquake data (Mousavi et al., 2019), and this perhaps led to its
higher RMSE and MAE values and lower MCC when applied to the complex East Antarctic data set. Var-
iations in performance across the three catalogs reveal that the efficiency of transfer learning also depends on
the diversity and quality of the training subset.

Figure 5 shows an example of the pick probabilities for different deep learning models when applied to continuous
data. EQT, GPD, and PhaseNet all have improved pick probabilities after transfer learning. The BasicPhaseAE
pick probabilities did not increase post‐transfer learning, and this could be due to the shorter input windows used
by this model, together with its shorter filters and missing residual connections (Münchmeyer et al., 2022).

Comparing our metrics to those from other studies (e.g., Bornstein et al., 2024; Michelini et al., 2021; Münch-
meyer et al., 2022; Yuan et al., 2023), we find that there is significant variability in performance between different
models, training approaches, and data sets. These differences may result from a variety of factors, including the
quality of the data set, the application of different data augmentation schemes (Section 4.2), and/or different

training strategies. For example, our MCC metric results are qualitatively
comparable to those of Münchmeyer et al. (2022), who examined the ETHZ
data set (Woollam et al., 2022), where some P‐ and S‐wave labels were
missing. This indicates comparable classification performance between the
two studies. However, our MCC values are slightly lower than those obtained
for the STEAD and INSTANCE data sets (Michelini et al., 2021), where all
phase labels are included. The difference in phase labeling likely contributes
to the different classification performance between these studies. Compared
to Yuan et al. (2023) and Bornstein et al. (2024), our RMSE and MAE values
are higher, indicating that our pick accuracy is not quite as robust. These
metric and performance differences may be associated with variations in the
data quality. Cryospheric regions, such as that being investigated in our study,
are characterized by additional signal scattering and noise within the ice sheet,
which are not typically encountered in other seismic settings, and these
conditions likely affect the accuracy of phase identifications. That said, our

Table 1
Fine‐Tuned Metric Results Before (Left Columns) and After (Right Columns)
Transfer Learning Was Applied Using the ML Catalog

Model AUC
P picks
RMSE

S picks
RMSE

P
picks
MAE

S
picks
MAE MCC

PhaseNet 0.7 0.8 3.0 2.1 3.0 2.3 2.2 1.4 2.2 1.5 0.3 0.6

BasicPhaseAE 0.4 0.7 3.2 2.3 3.0 2.5 2.5 1.6 2.3 1.7 0.3 0.5

GPD 0.8 0.8 2.2 1.8 2.3 2.1 1.5 1.2 1.6 1.4 0.6 0.8

EQTransformer 0.7 0.7 3.4 1.8 3.0 1.8 2.4 1.1 2.1 1.1 0.6 0.9

Mean 0.7 0.8 3.0 2.0 2.8 2.2 2.2 1.3 2.1 1.4 0.5 0.7

Std. Dev. 0.2 0.1 0.5 0.2 0.4 0.3 0.5 0.2 0.3 0.3 0.2 0.2

Note. AUC: Area under the Curve; RMSE: root‐mean‐square error; MAE:
mean absolute error; MCC: Matthews Correlation Coefficient. The best
metric values are highlighted in bold. The bottom two rows summarize the
mean and standard deviation of each metric across the four examined models.

Table 2
Same as Table 1 But Now for Transfer Learning Applied Using the MF
Catalog

Model AUC
P picks
RMSE

S picks
RMSE

P
picks
MAE

S
picks
MAE MCC

PhaseNet 0.7 0.9 2.8 1.1 2.4 1.2 1.8 0.5 1.6 0.6 0.3 0.7

BasicPhaseAE 0.4 0.8 3.2 1.1 2.8 1.3 2.5 0.6 2.0 0.7 0.3 0.7

GPD 0.8 0.9 1.2 0.6 1.3 0.8 0.6 0.3 0.7 0.4 0.7 0.9

EQTransformer 0.8 0.9 2.7 0.6 2.2 0.5 1.6 0.3 1.2 0.2 0.7 1.0

Mean 0.6 0.9 2.5 0.9 2.2 1.0 1.6 0.4 1.4 0.5 0.5 0.8

Std. Dev. 0.2 0.1 0.9 0.3 0.6 0.4 0.8 0.2 0.6 0.2 0.2 0.2
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metrics still highlight the improvement in performance for all the examined
deep learning models obtained by the application of transfer learning.

6. Model Assessment
6.1. Benefits and Limitations of Each Automated Event Detection
Approach

Each automated event detection approach has its benefits and limitations, and
the choice of which approach to use depends on the objective of the study and
the characteristics of the data set. The STA/LTA method stands out given its
minimal pre‐processing requirements, straightforward algorithm, and low
computational demands, making this technique efficient and readily appli-
cable. Notably, the approach can also identify low magnitude earthquakes if
the data has sufficiently high quality (Figure 6). However, as noted in Sec-
tion 3.1, STA/LTA can struggle to identify emergent or low SNR arrivals

(Schaff & Beroza, 2004; Yoon et al., 2015), which can make this technique more prone to errors, including an
increased risks of false positive detections and/or detection failures (Kato et al., 2012). This limitation is partly
due to the nature of the STA and LTA window lengths, which are not adjusted during the detection process

Table 3
Same as Tables 1 and 2 But Now for Transfer Learning Applied Using the SL
Catalog

Model AUC
P picks
RMSE

S picks
RMSE

P
picks
MAE

S
picks
MAE MCC

PhaseNet 0.7 0.8 2.0 1.4 2.4 2.0 1.2 0.8 1.6 1.2 0.4 0.8

BasicPhaseAE 0.4 0.7 2.8 1.7 2.7 2.2 2.0 1.0 1.9 1.4 0.4 0.7

GPD 0.8 0.9 1.4 0.9 2.0 2.0 0.8 0.6 1.3 1.2 0.8 0.9

EQTransformer 0.8 0.8 2.7 0.9 2.3 1.9 1.6 0.5 1.4 1.1 0.7 1.0

Mean 0.7 0.8 2.2 1.2 2.4 2.0 1.4 0.7 1.6 1.2 0.6 0.9

Std. Dev. 0.2 0.1 0.7 0.4 0.3 0.1 0.5 0.2 0.3 0.1 0.2 0.1

Figure 5. (a) Sample of the continuous Antarctic data recorded by station LEON (Figure 1), band‐pass filtered between 2 and
5 Hz. Lower panels show the corresponding pick probabilities for (b) EQTransformer (EQT), (c) PhaseNet, (d) Generalized
Phase Detection (GPD), and (e) BasicPhaseAE (BPAE). For each model, the top, and bottom panels show the pick
probabilities before and after transfer learning, respectively (note that the vertical scales can vary by panel). Blue lines
correspond to P‐waves, and orange lines correspond to S‐waves. For EQT, the green lines show the detection probability.
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(Trnkoczy, 2009) and hence restrict the method's ability to adapt to varying
seismic signal characteristics. Figure S5 in Supporting Information S1 shows
several examples of missed detections that resulted from the STA/LTA
inflexibility. Given its performance, STA/LTA is likely suitable for real‐time
seismic event detection applications, particularly in situations where an
existing, trained model is not available. This method is applicable for systems
such as earthquake early warning and volcanic monitoring, which require
rapid results. It is important to note that in these scenarios, the immediate
availability of results may be prioritized, even if it means accepting a higher
likelihood of false positive detections for lower magnitude events (e.g.,
Kumar et al., 2018; X. Li et al., 2016; Meier et al., 2020; Tepp, 2018).

The MF approach detects events with high precision, particularly if the events
have a high degree of waveform similarity. However, developing a
comprehensive set of template events can be time consuming, and the need to
compare each of those templates to the continuous data can be computa-
tionally demanding (Liu et al., 2020; Meng et al., 2012). Further, since theMF
technique is heavily dependent on the pre‐defined templates, it is susceptible
to missing events that diverge from recognized patterns (Gardonio
et al., 2019; Kato & Nakagawa, 2014; Peng & Zhao, 2009; Ross et al., 2018).

Several examples of such missed events are shown in Figure S6 in Supporting Information S1. Automatic event
detection with this method is best‐suited to environments where the seismic events are self‐similar, such as
volcanic‐related seismic swarms (e.g., D. Tan et al., 2023; Whidden et al., 2023; Wimez & Frank, 2022) and
repeating stick‐slip activity beneath glaciers (e.g., Helmstetter, 2022; Lucas et al., 2023; H. Ma et al., 2020).

Deep learning event detection techniques can help to address some of the problems faced by the STA/LTA and the
MF approaches. Since deep learning models can be trained to recognize intricate seismic patterns, this approach
has a greater degree of adaptability across a range of seismic signals and noise. Our analysis also illustrates how
deep learning model performance can be further enhanced via transfer learning, where pre‐trained models are
adapted to recognize the characteristics of unique seismic sources (Chai et al., 2020; W. Liao et al., 2021). That
said, deep learning approaches, with or without transfer learning, have their own set of challenges. Contrary to the
common perception that ML methods are too computationally intensive to provide rapid results, recent studies
(e.g., Krauss et al., 2023) have suggested that once a deep learning model is appropriately trained, it can be
efficiently executed on both CPUs and GPUs for rapid prediction. However, it is computationally expensive to
train deep learning models properly. Additionally, ML model performance is strongly linked to the quality and
diversity of the training subsets. This principle is demonstrated by our fine‐tuned models, where the inclusion of
diverse seismic events (e.g., icequakes) in the training data set, as opposed to a predominance of conventional
earthquake data, significantly improved the models' performance. Data augmentation techniques (Sections 4.1
and 4.2) are also critical to enhance the robustness and generalizability of deep learning models (Niksejel &
Zhang, 2024; W. Zhu et al., 2022). Further, the effectiveness of transfer learning depends on whether the pre‐
trained model is relevant to the target data set. If there is a mismatch between the source and target architec-
ture, there is a risk of negative transfer, where the pre‐trained model may fail to effectively adapt to the new task
(Civilini et al., 2021; R. Zhou et al., 2021). Careful fine‐tuning of the pre‐trained model is needed to ensure its
applicability to the specific seismic context, and this requires a certain level of understanding regarding the
model's architecture.

All that said, seismic event catalogs based onMLmodels typically have a greater magnitude of completeness (i.e.,
the minimum magnitude above which all events have been detected) compared to those generated by other ap-
proaches (Figure 6; e.g., X. Ma & Chen, 2022; Reynen & Audet, 2017; Ross et al., 2018), Therefore, if a given
study requires robust, extensive seismic constraints, the additional computational resources and complexity of
ML algorithms are worth the investment.

6.2. Preferred ML Model for East Antarctica

The metrics discussed in Sections 4.3 and 5 provide important information regarding the most applicable model
for a given seismic study. For our East Antarctic investigation, we prioritized thorough seismic event detection.

Figure 6. Histogram summarizing the number of events in each catalog after
transfer learning was applied, along with their corresponding local
magnitude estimates. Light gray bars represent the SL catalog, medium gray
bars denote the ML catalog, and dark gray bars correspond to the MF
catalog.
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While it is important to identify events accurately and precisely, the limited
seismic station coverage in our study region (Figure 1) emphasizes the need to
develop an event catalog that is as complete as possible. As such, our ideal
model is one that strikes a balance between sensitivity and accuracy, and our
extensive analyses indicate that the fine‐tuned GPD model is an optimal
choice. While EQT displays somewhat better pick accuracy, as indicated by
its RMSE and MAE values, its ability to distinguish between positive and
negative classes (AUC score) lags behind GPD (Tables 1–3). The trained
GPD model's high AUC score emphasizes that this model robustly distin-
guishes true events from noise. That is, events with low SNR, potentially
overlooked by other models and methods, are identified by GPD. Further-
more, the inherent variability of seismic data demands a model that performs

consistently, and the GPD model displays consistent performance across all three examined catalogs, both before
and after transfer learning is applied (Tables 1–3). This indicates that the GPD model is highly adaptable,
regardless of the data's origin.

7. Application
7.1. GPD Results for Each Catalog

We applied the fine‐tuned (transfer‐learned) GPD model to the full suite of East Antarctic data (2012–2015;
Figures 1 and 2), running three versions of the GPD detection algorithm concurrently, corresponding to our SL,
MF, and ML catalogs. As noted in Section 5, each model generates pick probabilities for the designated P‐ and S‐
wave arrivals (Figure 5). Picks with probabilities below a specified threshold (Table 4) are discarded. These
thresholds are essential for reducing the number of spurious picks, thereby enhancing the accuracy and reliability
of the detected seismic events, and the thresholds ultimately control the number of event identifications. Table 4
summarizes the corresponding pick probability thresholds used to determine qualifying P‐ and S‐waves. These
thresholds have led to the identification of new seismic events post‐transfer learning. Specifically, after transfer
learning, the number of new events in the SL, ML, and MF catalogs is 618, 372, and 201, respectively.

All three catalogs display an increase in the number of events around May 2013 and May 2014 (Figure 7).
Specifically, in May 2013, the number of events in the SL, MF, and ML catalogs increased by 6%, 3%, and
13%, respectively. Similarly, in May 2014, the number of events in the SL, MF, and ML catalogs increased
by 6%, 14%, and 4%, respectively. Additionally, in the ML catalog, a notable 8% increase in the number of
events occurred around December 2014. Seasonal changes in Antarctica are common in May as the austral

winter sets in. Tensile stresses in the ice sheet can be influenced by
temperature, and this can impact the formation of crevasses (Harper
et al., 1998; Holdsworth, 1969). Specifically, when temperatures drop, the
surface layers of the ice sheet can become substantially colder than the
underlying firn, and this temperature gradient subjects the colder, more
brittle surface layers to an increase in tensile stress. Consequently, new
crevasses may form and propagate along the ice sheet surface (Nath &
Vaughan, 2003), thereby leading to an increased number of icequakes.
December marks the beginning of the austral summer, when temperatures
start to warm, often leading to increased surface melting. Drainage of
surface meltwater to the base of the ice sheet can promote basal sliding
(e.g., Kamb, 2001; Tuckett et al., 2019; Walter et al., 2011; Winberry
et al., 2014; Zwally et al., 2002); therefore, seasonal changes may also
explain the increase in detected events during this time frame (Figure 7).

Local magnitudes (ML) were also computed for the SL, ML, and MF catalog
events (Figure 6), though we note that the magnitudes were determined using
amplitude attenuation parameters developed for southern California (Hutton
& Boore, 1987). While not specific to our study region, these parameters do
not impact our assessment since our goal was to simply determine relative
event magnitudes rather than to make any interpretations of absolute

Table 4
P‐ and S‐Wave Pick Probability Thresholds for the Three Transfer‐Learned
Catalogs

Catalog P threshold S threshold

ML 0.68 0.81

MF 0.42 0.51

SL 0.51 0.60

Note. A P‐ or S‐wave pick is declared if the probability exceeds the specified
threshold.

Figure 7. Cumulative number of events included in each catalog after
transfer learning was applied. The light gray line corresponds to the SL
catalog, the dark gray line corresponds to the MF catalog, and the medium
gray line corresponds to the ML catalog. Arrows denote time periods where
a notable increase in the number of events is observed.
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magnitude. As shown in Figure 6, all three techniques effectively detect low magnitude (ML ≤ 3) seismic events,
though the ML technique detects a higher number of signals with magnitudes below two.

7.2. Event Relocations

After the fine‐tuned GPD model was applied to the full East Antarctic data set, as described in Section 7.1, the
events from each of the updated catalogs were relocated using the NonLinLoc software package (Lomax
et al., 2000). An equal differential‐time likelihood function and the Oct‐Tree sampling approach were used to
compute the maximum likelihood hypocenters, based on the corresponding probability density functions (PDFs;
Lomax et al., 2000; H. Zhou, 1994). We also utilized a modified version of the crustal velocity model (Figure S7
in Supporting Information S1) from Pyle et al. (2010), which was developed for a nearby region in East
Antarctica. Only earthquakes with at least four P‐ and S‐wave arrival times were relocated. Additionally, to
account for any possible bias in the procedure, we performed a second inversion using the average arrival‐time
residuals at each station (Lomax et al., 2009), thereby leading to better constrained event locations.

For each event relocation, the average horizontal and vertical uncertainties of the confidence ellipsoid, which are
estimated by the PDFs, were used to determine the volume of the 68% confidence ellipse. This, in turn, was used
to determine the average uncertainty (Re) of each event location (Lomax et al., 2000). The relocated events in each
catalog were then grouped based on their uncertainty thresholds. The best constrained event locations (Group A)
had Re ≤ 5 km. Groups B, C, and D had progressively higher Re values (Group B: 5 < Re ≤ 10 km; Group C:
10 < Re ≤ 20 km; Group D: Re > 20 km), indicating less well‐constrained locations. The number of events in each
quality group is provided in Table S1 in Supporting Information S1. Figure 8 highlights event locations that had
Re ≤ 10 km (i.e., Groups A and B) within each catalog, and events from all groups are shown in Figure S8 in
Supporting Information S1.

We then integrated the three catalogs shown in Figure 8 into a comprehensive event catalog for the study region
using select matching criteria. Specifically, events were considered common between catalogs if their origin time
differences were less than 3 seconds and if their locations were within 10 km of one another. For such events, the
location with the lowest average relocation uncertainty was selected as the final location. Using these criteria, 63
events were common across all three catalogs (Figure 9). The number of common events between the MF‐ML,
MF‐SL, and SL‐ML catalogs were 205, 317, and 103, respectively. The remaining 401 SL events, 841ML events,
and 1,490 MF events were unique to their respective catalogs.

Figure 8. Seismic event relocations from NonLinLoc for quality Group A and B events. From left to right: SL catalog, MF catalog, and ML catalog. Blue circles denote
events that were detected by the corresponding original technique (i.e., Short‐Term Average/Long‐Term Average, template matching, EQT machine learning). Green
circles denote new events detected by transfer learning. As in Figure 1, light gray triangles indicate TAMNNET stations, and dark gray triangles denote other stations.
Abbreviations denote key locations including David Glacier (D), Campbell, Priestly, and Aviator Glaciers (C, P, A), and Mount Erebus (E). The locations of these maps
in relation to the rest of Antarctica are the same as in Figure 9.
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Many of the detected events are situated near David Glacier (Figure 9).
Shallow events (<5 km) in this region are consistent with those identified in
previous studies (e.g., Bannister & Kennett, 2002; Danesi et al., 2007, 2022;
Zoet et al., 2012, 2013), which have been attributed to stick‐slip behavior at
the base of the ice sheet. However, deeper events (>10 km) beneath the David
Glacier region are also observed, which could be associated with solid Earth
processes. For example, movement and mass redistribution within the East
Antarctic ice sheet may induce stress changes in the underlying lithosphere,
producing the deep‐seated events highlighted in our catalogs (Lucas
et al., 2021; Lund, 2015; Steffen, 2013; Steffen et al., 2020).

The comprehensive event catalog also shows notable seismicity beneath
Victoria Land, in the northeastern portion of the study region (Figure 9). The
prevalence of event detections in this area may reflect some degree of spatial
bias given the locations of the stations available for this study (Figure 1). The
TAMNNET stations, in particular, provide somewhat better coverage in this
region; therefore, nearby events may more likely meet the enforced minimum
number of P‐ and S‐wave arrivals needed for relocation. That said, the Vic-
toria Land event cluster (Figure 9) is concentrated near several other glaciers
that move across the Transantarctic Mountains and toward the Ross Sea,
including the Campbell, Priestley, and Aviator Glaciers. The best located
events in this cluster are relatively shallow and therefore may reflect ice‐bed
processes, similar to those suggested for David Glacier further to the south.
Deeper events are also seen beneath this region, down to about 25–50 km,
which are more likely associated with tectonic processes, such as faulting
(e.g., Pisarska‐Jamrozy et al., 2018), or with crustal deformation driven by
cryospheric fluctuations (e.g., Stewart et al., 2000). Further investigations
would be needed to evaluate the sources of the seismic events beneath David
Glacier and Victoria Land, but the automatically identified events from our
analyses provide some insight into the complex relationship between the solid
Earth structure and the Antarctic ice sheet.

It is also worth noting the cluster of seismic events near Mount Erebus, which
was uniquely identified by the ML catalog (Figures 8 and 9). Some prior

studies that have also recognized seismicity in this region attribute the events to small magnitude icequake sources
near the volcano's summit (Chaput et al., 2015; C. Li et al., 2021; Podolskiy &Walter, 2016). Other investigations
have attributed the Mount Erebus seismicity to volcanic activity within its shallow magmatic system (e.g., Aster
et al., 2008; S. M. Hansen & Schmandt, 2015; Kaminuma, 1987; Rowe et al., 1998, 2000). The absence of the
Mount Erebus event cluster in the SL and MF catalogs (Figure 8) underscores the effectiveness of deep learning
techniques in seismic detection, particularly in elucidating events with a range of sources, and emphasizes the
benefits of combining different automated event detection approaches.

8. Conclusions
Our study has evaluated the benefits and limitations of different automated seismic event detection methods, and
our results emphasize that the most appropriate approach depends on the specific attributes of the examined data
as well as the objectives of a given study. The STA/LTA method is well‐suited for real‐time event detection
applications that require rapid results, even if there is a higher likelihood for false detections. The MF technique
works well for environments that generate seismic events with a high degree of waveform similarity. Deep
learning models offer the most adaptability if dealing with a range of seismic sources and noise, and their per-
formance can be enhanced with transfer learning, which provides an effective approach to adapt pre‐trained
models for unique data sets.

For our East Antarctic investigation, the fine‐tuned GPD model, characterized by its high AUC score, reliable
picking accuracy, and consistent performance across the examined catalogs, emerged as the most robust,
providing new insights into seismic sources in the region. Event relocations based on the fine‐tuned catalogs offer

Figure 9. Comprehensive event catalog for our study region, developed by
combining the SL, MF, and ML catalogs that were updated via transfer
learning. Yellow stars denote events common to all three catalogs; blue
circles denote events common to two catalogs; green diamonds indicate
events that are unique to a particular catalog. Abbreviations and station
symbols are the same as in Figure 8. The inset map on the lower left shows
where the main map is located in relation to the rest of Antarctica (red box).
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new insights into potential seismic sources, including both shallow cryospheric and deeper tectonic processes.
Notably, the integration of traditional methods, such as STA/LTA and MF, together with machine learning
techniques, including transfer learning, has greatly improved the completeness of our seismic event catalog
(Figure 9). This ensemble approach has not only improved seismic event detection in East Antarctica by iden-
tifying previously unrecognized seismicity, but it also underscores the potential for automated event detection
approaches to enhance our understanding of seismic activity even in areas with limited station coverage.

Data Availability Statement
The facilities of SAGE Data Services, particularly the SAGE Data Management Center, were used to access the
waveforms and related metadata used in this project (http://ds.iris.edu/mda/). Specifically, we employed datasets
from ASL/USGS (1993), S. Hansen (2012), and Wiens et al. (2007). SAGE Data Services are funded through the
Seismological Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foundation
under Cooperative Support Agreement EAR‐1851048. All of the waveform data used in our study, along with all
of the fine‐tuned models and event catalogs generated, are available at Ho et al. (2024). Our ML catalog was
developed with the easyQuake software package (Walter, 2022; Walter et al., 2021), and transfer learning was
implemented with Seisbench (Ho, 2024; Münchmeyer, 2021; Woollam et al., 2022). The corresponding software
packages are also included in our Zenodo repository (Ho et al., 2024). The corresponding software packages are
openly available via GitHub at https://github.com/jakewalter/easyQuake.git, https://github.com/seisbench/seis-
bench, and https://github.com/longmho/Transfer_Learning_and_Seisbench. Some figures were generated with
the Generic Mapping Tools software (Wessel et al., 2013).
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