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A B S T R A C T

Controls on landslides vary as a function of landscape and regional activity. For example, low-relief, woodland 
regions have slope gradients, soil types, and substrate lithologies that contrast with steeper mountainous regions 
prone to rock fall and debris flows. Similarly, regional variations in precipitation, earthquakes, and other impacts 
on landslide surfaces create regional variations in landslide properties. While the controls on landslide charac
teristics have been extensively studied for high-relief coastal and tectonically active regions, controls on low- 
relief landslides have received comparatively less attention. We focus here on a part of the Ozark and Oua
chita Mountains in the US southern mid-continent to explore such characteristics of landslides and potential 
controls in low-relief regions. The area exhibits frequent landslides in soil-covered low-relief forested hillslopes. 
We evaluated the frequency-size scaling of landslides occurred during periods of different earthquake frequency 
and precipitation amount (pre- and post-2005). We also produced maps of landslide susceptibility based on 
random forest machine learning applied to remotely sensed data. We found that landslides are clustered mostly 
in upland hillslopes, and that small landslides dominate the area, quantified by a landslide frequency-size dis
tribution fitting a double Pareto curve. Additionally, the overall landslide frequency, and potentially the por
portion of smaller landslides relative to the larger ones, significantly increased after 2005, the period during 
which the area also experienced increased induced seismicity and extreme storm events. Approximately 94 % of 
historical landslides were within random-forest-classified high-landslide probability (probability > 0.5) zones, 
coinciding with moderate to steep (18◦ ± 9◦) and convergent upland slopes underlain by shale and sandstone. 
Anomalously high frequency landslides appear to result from triggering by extreme weather, human-induced 
earthquake activity, and human-induced hillslope modification.

1. Introduction

Landslides are complex natural phenomena that pose a serious haz
ard to society and play a significant role in the evolution of landscapes. 
Landslides occur across a range of spatial and temporal scales. A wide 
range of triggering events such as earthquakes, large storms, rapid 
snowmelt, volcanic eruptions, and other forcings increase their fre
quency and magnitude (Dunham et al., 2022; Jibson and Tanyaş, 2020; 
Kargel et al., 2016; Tatard et al., 2010; Thomas et al., 2004; Yamagishi 
and Yamazaki, 2018). Yet, landslides also depend on regional tectonics, 
climate, geomorphology, as well as intrinsic hillslope characteristics 
such as hillslope geometry and substrate strength (Bellugi et al., 2021; 
Medwedeff et al., 2020; Samia et al., 2017).

The most studied landslide inventories worldwide come from high- 

relief, tectonically active mountainous and coastal regions 
(Kirschbaum et al., 2010; Medwedeff et al., 2020). High-relief moun
tains provide enough relief and slope gradient (Fig. 1) to generate large 
and long-runout landslides (Korup et al., 2007), which are typically the 
most societally-impactful geohazards (Emberson et al., 2020; Petley, 
2012). Hillslopes in these regions tend to be near threshold conditions, a 
critical slope gradient or height at which hillslopes fail readily (Blöthe 
et al., 2015; Clarke and Burbank, 2010; Korup et al., 2007; Larsen et al., 
2010). On the other hand, the sensitivity and associated hazards of 
landslides in tectonically stable, low-relief vegetated mountains in 
intraplate settings are less well-studied. In these environments, hill
slopes tend to be relatively gentle (Fig. 1) where soil production rates 
can exceed erosion rates (Heimsath et al., 1997; Ouimet et al., 2009) 
which results in hillslopes generally being covered by thick soil. These 
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hillslopes can also generate landslides when slight changes in the rate 
and/or the magnitude of the triggering mechanism influences the hill
slope strength (Casadei et al., 2003; Lacroix et al., 2020; Pánek et al., 
2019; Regmi and Walter, 2020a; Roering et al., 2001; Van Den Eeckhaut 
et al., 2007). The heterogeneity in soil-geomorphic and anthropogenic 
conditions in this environment cause challenges in understanding the 
slide characteristics and how they compare relative to high-relief, 
tectonically active regions.

Here we focus on the relatively modest topography of the Ozark and 
Ouachita Mountains of Oklahoma and Arkansas to explore the charac
teristics of landslides in low-relief regions. These mountains show 
relatively low relief and gentle hillslopes compared to the major high- 
relief mountain ranges across the world (Figs. 1 and 2, Fig. S1 in Sup
plementary Information S1). The area receives frequent storms 
(Oklahoma Climatological Survey, 2018) and has experienced increased 
low-magnitude induced seismicity over the last decade (Walter et al., 
2020) (Fig. S2 in Supplementary Information S1). To date, however, 
there is a paucity of information on: the type and spatiotemporal pattern 
of landslide size, major hillslope characteristics that predispose land
slides, and landslide susceptibility across the broader region encom
passing the Ozark and Ouachita Mountains. Additionally, there remains 
no clear sense of potentially distinctive nucleation mechanisms for 
landslides in soil-covered regions, where the role of creep and shallow 
slides may be enhanced (Ferdowsi et al., 2018; Roering et al., 2001). We 
hypothesize that a disproportionately large number of landslides occur 
in this and similar regions given favorable intrinsic hillslope charac
teristics (bedrock lithology and soil) coupled with sufficient triggering 
mechanisms (precipitation, seismicity and human induced hillslope 
modification). To test this hypothesis we map landslides across a large 
part of the Ozark and Ouachita Mountains, determine their frequency- 
size (area) relationship, and compare results with published 
frequency-size datasets from different climatic and tectonic regions 
across the world. We determine the temporal frequency to assess if the 

recent change in the rate and magnitude of triggering forces has any 
influence on the landslide frequency. Additionally, we rank landslide 
predisposing factors to determine the major intrinsic controls on land
slides and prepare a high-resolution map of landslide susceptibility to 
assess the likelihood of landslides in different soil-geomorphic envi
ronments. We then evaluate the association of these controls with 
landslide susceptibility in the study area and assess how these controls 
are different from the primary controls of landslides in different climatic 
and tectonic regions.

There are qualitative, deterministic, and statistical limitations in 
handling the large datasets needed to fully probe the spatiotemporal 
patterns of landslides (Booth et al., 2009; Carrara and Merenda, 1976; 
Dietrich et al., 2001; Nefeslioglu et al., 2008; Pack et al., 1998; Regmi 
et al., 2010b). Therefore, we employ a random forest machine learning 
algorithm to characterize landslide-topography associations. The algo
rithm has the potential to map landslide susceptibility across a large 
region with diverse geomorphology, soil and climate. Our study thus is a 
new example to complement previous work using machine learning 
methods such as regression tree, support vector machine, random forest, 
and neural networks in landslide susceptibility mapping (Huang et al., 
2020; Liu et al., 2023; Liu et al., 2024; Merghadi et al., 2020; Taalab 
et al., 2018; Youssef et al., 2016). These computational methods: (i) 
handle large volumes of data, (ii) facilitate sampling design, factor se
lection, and model optimization, (iii) minimize model overfitting and 
(iv) solve for the nonlinear relationships between landslides and forcing 
factors (Kuhn et al., 2020; Wu et al., 2019). Using random forest method, 
we develop a high-resolution map of landslide susceptibility in the focus 
area in Oklahoma and Arkansas. Through the mapping we deduce 
several key properties of landslides in the study area, providing insight 
into controls on landslides in similar environments worldwide. 
Furthermore, our work demonstrates a workflow that could be 
expanded to include other regions so that spatiotemporal landslide re
lationships could be studied with the same lens.

Fig. 1. (a) Landslide susceptibility map of the globe. (b, c) Distribution of slope gradient and local relief within selected areas across the globe (black rectangle in 
Fig. a). Note high-relief mountains along plate boundaries and coastal regions (Sierra Nevada, Cascade, Southern Alps, European Alps, Peruvian Andes, and 
Himalaya) fall within very high landslide susceptibility (red color). Large number of landslides including fatal ones have been reported from these regions. The 
susceptibility map was developed based on the approach presented in Stanley and Kirschbaum (2017) and Emberson et al. (2020) (map source: NASA). The study 
area (Ozark and Ouachita Mountains) shows significantly smaller distribution of hillslope gradient and local relief compared to other mountain ranges, and falls 
within moderate (yellow) to low susceptibility (green) region. Both slope gradient and local relief (range of elevation within 1 km radius circle) were mapped from 
SRTM 90 m DEM.
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2. Study area

2.1. Location, climate, and geomorphology

The study area is located in the Ozark and Ouachita Mountains in 
eastern Oklahoma and western Arkansas (Fig. 2). Encompassing ~8,000 

km2, the area is characterized by a humid subtropical climate with the 
annual average precipitation ranging from ~1200 to ~1300 mm with 
maximum precipitation during summer (June, July and August) and 
minimum precipitation during winter (December, January and 
February) (Johnson and Luza, 2008; Oklahoma Climatological Survey, 
2018). The vegetation is dominated by oak-pine forest in upland areas 

Fig. 2. Location of the study. The study area comprises parts of the Ozark and Ouachita Mountains in eastern Oklahoma and western Arkansas. Locations of 
landslides were mapped from satellite and aerial imagery acquired since 1995 and archived in Google Earth®. The frequency and size of these landslides are shown in 
Fig. 5. The inset maps show the distribution of hillslope gradient and elevation determined from 10 m USGS NED DEM. KS: Kansas; OK: Oklahoma; TX: Texas; AR: 
Arkansas; and MO: Missouri.

Fig. 3. (a) A soil profile observed along a road cut slope in Cavanal Hill. (b, c) Shallow landslides near Red Oak along the Oklahoma State Highway 82. (d) A shallow 
landslide along the Interstate 40 in the Ozark. (e) A shallow landslide located close to the Interstate 40 in Cavanal Hill. Top soil in the soil profile is mostly dominated 
by fine sandy loam (USDA Natural Resources Conservation Services, 2016). The first landslide (b), currently stabilized using riprap and other engineering techniques, 
completely damaged Oklahoma State Highway 82 and a forest road. All these landslides directly or indirectly affected the traffic.
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and post-oak blackjack forest in lowland areas, along with trees and 
shrubs including flowering dogwood, and highbush and lowbush blue
berries (Johnson and Luza, 2008).

The Ozark and Ouachita Mountains are deformed by many faults and 
the surface geology is dominated by moderately to highly weathered 
bedrock lithologies (Haley et al., 1993; Heran et al., 2003). The eleva
tion ranges from 80 m to 840 m and the landscape consists of flat to 
gently sloping lowlands, and hilly and mountainous upland topography 
(Fig. 2). The lithology is primarily shale and sandstone with chert, 
limestone and colluvial deposits in lesser amounts (Haley et al., 1993; 
Heran et al., 2003). Upland slopes underlain by shale are mostly gentle 
and predominantly covered by regolith (hereafter called soil), whereas 
slopes underlain by sandstone exhibit relatively steep topography with 
talus deposits at the steep slope base. The topography causes several 
major drainage basins in the area to exhibit dendritic drainage patterns.

Soil-mantled slopes in the study area develop primarily by the 
weathering of shale, as well as colluvium deposited by erosion and 
landslides (Fig. 3). The texture of the topsoil is dominated by loam and 
silty loam in the upland slopes of the Ozark and Ouachita Mountains and 
clay and clay loams in the lowlands (Phillips et al., 2005; USDA Natural 
Resources Conservation Service, 2016). The average depth of the soil 
has been observed as ~1 m in upland landscapes of the Ouachita 
Mountains (Fig. 3a), particularly along the zones of topographic 
convergence (i.e., hillslope hollows or topographic depressions) 
(Phillips et al., 2005; Regmi and Walter, 2020a), and similar soil depths 
can be expected across the majority of the soil-mantled hillslopes in the 
Ozark Mountains.

2.2. Mass movement

The area exhibits clear evidence of various mass movement and 
erosional features including recent shallow landslides, rills, gullies, old 
deep-seated landslides, and incised channels (Fig. 3, Figs. S3 – S5 in 
Supplementary Information S1) (Regmi and Walter, 2020a). Shallow 
landslides, defined here as landslides with maximum depth of slip sur
face less than the tree root depth, are classified following Varnes (1978). 
They include soil creep, soil slides, debris flows, debris slides and 
rockslides. In general, soil creep and soil slides occur mostly on soil- 
mantled surfaces underlain by shale, debris flows occur along the 
zones of topographic convergence underlain mostly by shale, and debris 
slides occur mostly in colluvial deposits. Rockslides and rock falls also 
occur, particularly on steep slopes formed by sandstone exposure and 
contribute to the development of talus and colluvial deposits at the base 
of the slope.

A small number of deep-seated large landslides also occur across the 
study area. The deep-seated landslides occur mostly along the edges of 
the upland plateau underlain by resistant sandstone caps and appear to 
be related to the structural failure of the bedrock (Regmi and Walter, 
2020a; Taalab et al., 2018). These landslides seem to be of ages ranging 
from hundreds- to thousands of years old as indicated by relatively dense 
vegetation and smooth surfaces with well-evolved hydrological network 
in comparison to recent and active slides (LaHusen et al., 2016). Recent 
shallow landslides are observed along the scarp and within the deposits 
of some of the deep-seated landslides (Fig. S3 in Supplementary Infor
mation S1).

Landslides in Arkansas and Oklahoma can be socially and econom
ically disruptive (Fig. 3). For example, a landslide that occurred near 
Sallisaw in the southern Ozarks during a rainstorm of April 2020 
damaged over 2,000 feet of water lines and left ~2,500 people without 
running water for a week (NEWS, 2020). A rockslide that occurred south 
of Devil’s Den State Park (Fig. 2) in the Ozark Mountains of Arkansas 
during severe storms of June 2019 damaged Arkansas State Highway 
220 and temporarily interrupted traffic (NEWS, 2019). Similarly, a large 
landslide that occurred north of Red Oak (Figs. 2 and 3b) in the Ouachita 
Mountains of Oklahoma prior to 2003, severely damaged Oklahoma 
State Highway 82 and a forest road (Cerato et al., 2014).

A few hillslope geomorphic studies have been conducted in these 
mountains (Hayes, 1971; He et al., 2014; Luza and Johnson, 2005; 
Oakes, 1952; Rahimi et al., 2021; Regmi and Walter, 2020a; Thaler and 
Covington, 2016). For example, Oakes (1952) notes eyewitness reports 
of landslides near Cavanal Hill shortly after the M 5.5 El Reno earth
quake on April 9, 1952. The earthquake occurred ~300 km from 
Cavanal Hill. Regmi and Walter (2020a) determined the frequency of 
historical earthquakes that impart >2 kPa dynamic stresses for eastern 
Oklahoma since 1900 and found an increased potential for dynamic 
stress perturbation of landslide activity since ~2010. They also evalu
ated the effectiness of using surface roughness derived from high- 
resolution LiDAR topographic data in mapping landslides. Similarly, 
He et al. (2014) prepared a regional-scale 30 m cell-sized raster map of 
landslide susceptibility for the entire state of Oklahoma using an expert- 
based weighted linear combination of a number of factors that can 
predispose landslides.

3. Materials and methods

3.1. Overview

The methodology of this study consists of two parts. First, we prepare 
an inventory of landslides and associated characteristics including age, 
area, and runout distance from high-resolution time series satellite and 
aerial imagery acquired since 1995 and archived in Google Earth®, and 
1 m bare-earth USGS 3DEP LiDAR topographic data. Field reconnais
sance was carried out to verify the map of landslides and underlying soil 
and lithology. Second, we identify factors characterizing hillslope en
vironments that can predispose landslides (Table 1) and can be used as 
independent variables of landslides (hereafter are called environmental 
covariates) in the random forest landslide susceptibility modeling effort 
from 10 m USGS NED elevation data, statewide integrated 1:500,000 
scale USGS geological map, USDA soil map, USGS landcover map, and 
road and highway map (Fig. 4).

3.2. Landslide mapping and frequency-size characterization

Landslides were mapped over Google Earth imagery and a shaded 
relief image derived from 1 m LiDAR digital elevation model (DEM) in a 
GIS platform. The imagery-based mapping was carried out by qualita
tively identifying the distinguishing tone, shape, size, and texture of 
landslide scarps and displaced materials. Challenges to this mapping 
include: (1) small-sized landslides are undetectable in low-resolution 
older images, (2) indistinct boundaries between highly vegetated land
slide and non-landslide areas, (3) difficulties in identifying type (i.e., 
rock or soil dominated, and recent or old) and size of the material dis
placed by a landslide because of the vegetation cover and resolution of 
the images, and (4) similar appearance of rockslides and bare rock cliff. 
These issues in most of the cases were resolved by employing three- 
dimensional visualization of LiDAR DEM and shaded relief image in 
ArcGIS 10.7.1® (ESRI, Redland, CA). Ages and temporal frequencies of 
landslides in 5-year interval were determined from the time series im
agery. The location, type, and activity of some of the landslides were 
verified by field mapping. All these attributes were linked with spatial 
information of the landslides and stored in ArcGIS® for calculation of 
landslide areas and runouts.

Runout length is computed as the distance from the head to the toe of 
a landslide along the path of the movement. The measurement is carried 
out manually by tracing the path of the landslide movement on geore
ferenced satellite images. Landslide frequency-size distribution is 
derived from Gaussian kernel-estimated probability density functions of 
landslide area (Larsen et al., 2010; Regmi et al., 2014b) using the 
bandwidth determined based on Silverman Rule of Thumb (Silverman, 
1984). The probability density estimates of landslide areas are then fit 
by double Pareto distributions (Fig. S6 in Supplementary Information 
S1) following Stark & Hovius (2001) using a non-linear least-squares 
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optimization method in LMFIT package (Newville et al., 2023). The 
goodness-of-fit statistics include the coefficient of determination (R2), 
chi-square, Akaike information criterion, and Bayesian information 
criterion. Many studies show landslide frequency-size relation follows a 
double Pareto distribution, defined by two power-law relationships, first 
with positive power-exponent (β) representing small-sized landslides, 
and the second with negative power-exponent (α) representing large 
landslides, separated by a rollover in relationship curve (t) (Frattini and 
Crosta, 2013; Guthrie and Evans, 2004; Hurst et al., 2013; Medwedeff 
et al., 2020; Regmi et al., 2014b; Stark and Hovius, 2001; Tanyaş et al., 
2019; Van Den Eeckhaut et al., 2007). These attributes together can 
characterize the overall distribution of landslide size and can be used to 
compare the sensitivity of different-sized landslides in different regions. 
We compared our power-law exponents with similar datasets from 
different climatic and tectonic regions to characterize how the size 

distribution of our landslides compares with global landslides.

3.3. Landslide susceptibility mapping

3.3.1. Overview
We prepare a landslide susceptibility map by assessing relationships 

between landslides and landslide predisposing factors (covariates) 
(Table 1), and implementing the random forest algorithm (Fig. 4). In this 
process, we: (i) prepare maps of covariates and convert them into raster 
GIS formats (10 m × 10 m cell size), (ii) develop a sampling design to 
prepare the dataset needed for training and testing landslide suscepti
bility models, (iii) preprocess the dataset, determine optimum samples, 
model parameters and input covariates, (iv) test the validity of training 
models, (v) and implement the best model in mapping landslide sus
ceptibility (Fig. 4).

3.3.2. Environmental covariates
Based on the observation of landslides in the field and previous work 

conducted in eastern Oklahoma and western Arkansas (He et al., 2014; 
Regmi and Walter, 2020a) as well as worldwide (Ayalew and Yamagishi, 
2005; Lee et al., 2004; Pourghasemi et al., 2012; Regmi et al., 2010a; 
Regmi et al., 2010b; Yalcin, 2008), we identified 16 factors including 
geologic, eco-hydrogeomorphic, and anthropogenic environments that 
can predispose landslides, and used them as covariates of landslides in 
landslide susceptibility modeling effort (Table 1, Figs. S7 and S8 in 
Supplementary Information S1).

We used USGS integrated geological maps of Oklahoma and Arkan
sas (Stoeser et al., 2005) to develop two covariates: a map of lithology 
and a map showing distance from faults (Table 1). The geological map of 
Oklahoma is a 1:500,000 scale map prepared by Heran et al., (2003), 
and the map of Arkansas is a 1:500,000 scale map prepared by Haley 
et al. (1993). Both maps were merged based on primary rock types and 
then converted the merged map into a 10 m cell-sized raster to match the 
resolution of other covariate rasters. These coarse-scale maps were 
adopted because of the lack of higher resolution maps across the entire 
study area.

Soil properties were extracted from the United States Department of 
Agriculture (USDA) State Soil Geographic (STATSGO) dataset (USDA 
Natural Resources Conservation Service, 2016). The data consist of 
generalized map unit polygons characterizing homogenous soil char
acteristics, and tabular data consisting of various properties of soil in 
each map unit. Using these data, we prepared a map showing classes of 
soil texture determined based on the percent distribution of sand, silt 
and clay sized particles in the soil and converted the map into a 10 m 
cell-sized raster; the approach follows several previous examples in the 
landslide literature (He et al., 2014; Hong et al., 2007; Lee and Min, 
2001).

The land cover data used in this study is USGS GAP/LANDFIRE 
National Terrestrial Ecosystems 2011 raster data of 30 m resolution 
(USGS, 2016). The dataset was created using Landsat satellite imagery, 
and includes a detailed vegetation and land use classification system. We 
resampled these data into a 10 m cell-sized raster and used as a landslide 
covariate.

Many landslides were observed near roads and highways. The po
tential triggers of these landslides could be traffic-induced slope vibra
tion as well as road-cutting activities (He et al., 2014; Maguigan et al., 
2015; Pachauri and Pant, 1992). We assumed that landslides tend to 
occur closer to the highways and roads, so a map of distance from roads 
can be used as a landslide predictor. We merged roads and highways 
data of Oklahoma and Arkansas (from OKMaps: https://okmaps. 
org/ogi/search.aspx and the Arkansas Department of Transportation:
https://gis.arkansas.gov/product-category/data/transportation/) and 
prepared a raster map of 10 m cell size showing distance from roads.

Geomorphic and hydrologic data layers (Table 1) were developed 
from 10 m NED elevation data in ArcGIS® and SAGA® (http://www. 
saga-gis.org/en/index.html). These datasets included slope, curvature 

Table 1 
Types, source, and significance of landslide predisposing factors (covariates) 
used in landslide susceptibility mapping. Covariate acronyms are listed within 
brackets.

Data type Covariates Significance Data source

Landslide inventory Location of historical 
landslides

Field surveys, Google 
Earth ® images, and 
USGS LiDAR DEM 
(https://nationalmap 
.gov/elevation.html)

Geologic Geological map 
(geo)

Characteristics of the 
slope material

USGS (https://pubs. 
usgs.gov/of/2 
005/1351/)Proximity to 

fault (df)
Co-seismic landslide 
triggering

Landcover Landcover (lc) Root reinforcement 
of soil, surface runoff 
regulation

USGS (https://www. 
usgs.gov/core-scienc 
e-systems/scienc 
e-analytics-and-synth 
esis/gap)

Soil Soil texture (st) Shear strength of soil USDA (https://we 
bsoilsurvey.sc.egov. 
usda.gov/)

Topographic Elevation 
(elev)

Climate, vegetation, 
and potential energy

USGS NED DEM (http 
s://nationalmap. 
gov/elevation.html)Slope (slp) Overland and sub- 

surface flow velocity
Aspect (asp) Solar insolation, 

evapo-transpiration, 
flora and fauna 
distribution and 
abundance

Plan curvature 
(plc)

Converging, 
diverging flow, soil 
water content, and 
soil characteristics

Profile 
Curvature (prc)

Flow acceleration, 
erosion/deposition 
potential

Tangent 
Curvature (tc)

Erosion/deposition

Water related Flow 
Accumulation 
(fac)

Runoff velocity, 
runoff volume, and 
potential energy

Surface 
roughness (sr)

Water flow, water 
pounding potential

SAGA Wetness 
index (swi)

Soil water content

Stream power 
index (spi)

Erosive power of 
water flow

Proximity to 
streams (ds)

Susceptible to 
hillslope 
undercutting

Anthropogenic Highway and 
roads (dh)

Landslide triggering 
by the road cutting 
and vibration 
generated by the 
vehicles

OKMaps and 
Arkansas Dept. of 
Transportation (https 
://okmaps.org/ogi/; 
https://gis.arkansas. 
gov/)
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and surface roughness as geomorphic covariates, aspect as a climatic 
covariate, SAGA wetness index, stream power index, flow accumulation 
and stream network as hydrologic covariates. Slope, curvature and 
aspect were calculated from 10 m NED elevation data. Surface rough
ness was quantified as a standard deviation of slope within a 30 m × 30 
m moving window following Frankel and Dolan (2007). The variable is 
considered a predictor of landslides because studies show standard de
viation of slope can effectively characterize rough surface topography of 
soil creep and landslides (LaHusen et al., 2016; Regmi and Walter, 
2020a). Hydrological factors including flow accumulation (upstream 
contributing area) and stream network maps were developed from NED 
data. Similarly, SAGA wetness index, a natural logarithmic ratio of up
stream contributing area and tangent of local slope, and stream power 
index, a product of contributing area and tangent of local slope (Böhner 
et al., 2006) were computed in SAGA GIS®.

3.3.3. Sampling design and data preprocessing
The primary focus of the sampling design is to create a landslide 

binary (presence and absence) database along with associated covariate 
attributes that can be used to train and validate models. We sampled 
landslide data from entire cells of landslide scarps and an equal number 
of non-landslide data from the areas devoid of landslides excluding 
broad lowland riverine plains and valley bottoms. The sampling meth
odology follows previous studies (Ayalew and Yamagishi, 2005; Dou 
et al., 2020; Nefeslioglu et al., 2008; Regmi et al., 2014a; Yilmaz, 2010). 
All covariate values were then extracted to these samples and the entire 
population was revised to eliminate covariate values associated with the 
DEM errors, such as striping artifacts.

Next, the entire population was divided into training (70 % of the 
total) and validation datasets (30 % of the total) where each of the 
datasets consists of an equal number of landslide and non-landslide data. 
The reason for using a 70/30 split between training and validation data 
is that 70 % of the data is anticipated to be sufficient for generating 
stable training models that uncover the underlying patterns and re
lationships within the data. The remaining 30 % is reserved specifically 
for independently validating these models. Both datasets were further 

pre-processed using the Caret package in R® (Kuhn et al., 2020). For 
example, the missing values were handled using a bootstrap aggregation 
imputation technique via the bagImpute function, and covariates that 
are irrelevant or redundant from the analysis were removed using 
recursive feature elimination (RFE) technique (Kuhn et al., 2020). RFE 
performs covariate selection by iteratively training a model, ranking 
covariates, and then removing the lowest-ranking covariate in a recur
sive fashion. The accuracy obtained after each RFE was then compared 
to select optimal input covariates. The selected datasets were then 
implemented for random forest hyperparameter tuning and landslide 
susceptibility model development, described in sections 3.3.4 and 3.3.5.

3.3.4. Random forest modeling
The random forest algorithm generates several decision trees by 

building a bootstrapped sample from observations, and aggregates the 
decision made by each of the trees to provide one single prediction. The 
prediction output is the majority of decisions from these trees in case of 
classification, and the average of the outputs from an individual tree in 
case of regression (Breiman et al., 1984). The algorithm consists of three 
user defined parameters, also termed “hyperparameters,” including the 
number of trees, the minimum number of nodes in a tree, and the 
number of the covariates to split at each node. The split at a node is 
based on a random subsample of covariates in such a way that the 
process minimizes the regression or classification error. Nodes continue 
to be split until no further improvement in error is achieved. Omitted 
observations, termed the “out-of-bag” sample, are used to estimate the 
prediction error. The performance of the models depends on a combi
nation of these hyperparameters (Cutler et al., 2012). The number of 
covariates at each node affects both the correlation and strength of each 
individual tree, and thus influences the model performance. Similarly, a 
smaller number of trees can result in relatively unstable and less accu
rate models compared to those developed with larger number of trees. 
However, the computation time increases with the number of trees.

The random forest algorithm can handle both continuous (i.e. slope) 
and categorical covariates (i.e. geologic unit names or rock types). The 
algorithm can quantify the contribution of each of the covariates 

Fig. 4. Flowchart of methodology for mapping landslide susceptibility based on random forest classification.
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towards the model prediction by accounting for interactions and non- 
linearity between covariates (Díaz-Uriarte and De Andres, 2006; Ver
onesi and Hurni, 2014). Because the algorithm obtains results from a 
large number of trees where each tree is trained on a unique bootstrap 
subsample of the data, the approach reduces the effect of correlation 
amongst covariates and minimizes the noise in the data (Strobl et al., 
2007; Svetnik et al., 2003).

The approach has some limitations too. For example, the predictive 
capability of the model is solely dependent on the quality, quantity, and 
the spatial distribution of the observations used to train the model. Thus, 
stable models depend on the optimal samples as well as sufficient input 
covariates. The model results need to be verified by enough independent 
observations (validation data) as well as expert-based evaluation of the 
model results (i.e. landslide susceptibility map). In addition, the algo
rithm provides little understanding of decision process of each individ
ual tree and therefore the relationship between landslide and covariates 
cannot be examined individually for every tree in the forest.

3.3.5. Hyperparameter tuning and model development
We implemented a grid search-based algorithm available in the Caret 

package (Kuhn et al., 2020) to determine the optimum number of trees 
and the maximum number of covariates to split at nodes. Models were 
developed using different combinations of numbers of trees (50, 100, 
200, 300, 400 and 500) and covariates to split, ranging from 1 to the 
total number of covariates identified by the RFE. The Gini index, which 
calculates the purity of the classification of a dependent variable (i.e., 
landslide presence / absence) for a given covariate (Cutler et al., 2012), 
was used as a measure of the best covariate split selection, and trees 
were grown until no further splitting improves the model.

The hyperparameter combination and RFE-selected covariates that 
resulted in the best prediction accuracy were used for final landslide 
susceptibility model development. In doing so, training models were 
developed implementing five-fold cross validation technique. The 
approach divides the dataset into five equal subsets, and during each run 
it uses four sets (80 %) to develop a training model and tests the accu
racy of the model using the fifth set (20 %). In such a way, the algorithm 
develops five models and independently tests the accuracy of each 
model. The final model is the average of all models. The validity of the 
final model was then assessed by the validation dataset.

The performance of all models were determined based on the 
receiver operating characteristic (ROC) curve analysis. ROC curve 
analysis is a statistical method that can be used to distinguish between 
two classes of response to an event, such as presence or absence of 
landslides (Egan and Egan, 1975; Gorsevski et al., 2006; Søreide, 2009). 
The curve is a plot of the probability of a correctly predicted response 

(true positive rate or sensitivity) versus the probability of a falsely 
predicted response (false positive rate or 1− specificity) as the cutoff 
probability varies. The area under the ROC curve (AUC) ranges from 0.5 
to 1. If all the responses are correctly predicted, AUC would equal 1. 
Similarly, the performance of the prediction can be evaluated by 
computing “overall accuracy,” which is a ratio of the frequency of 
correctly predicted assessments determined based on a probability 
threshold (i.e., 0.5 in this study) to the total number of assessments.

4. Results

4.1. Landslide characteristics

Altogether, 717 landslides were mapped. The landslides are pri
marily shallow and clustered in many upland regions (Fig. 2), particu
larly in Boston Mountain in the Ozark and Cavanal Hill and Sugarloaf 
Mountain in the Ouachita Mountains. The landslide area ranges from 30 
m2 to 340,000 m2 with an arithmetic average of ~7,300 m2, median of 
2,200 m2 and standard deviation of 20,700 m2. In logarithmic distri
bution, the average and standard deviation of landslide area are 
computed as 3.32 m2 and 0.7 m2, respectively (Fig. 5a). The landslide 
runout ranges from 20 m to 500 m with an arithmetic average of ~90 m 
and standard deviation of 85 m (Fig. 5b). Additionally, the temporal 
frequency of landslides computed in the five-year interval shows the 
number of landslides increased significantly since 2005 (Fig. 5c).

The frequency-size scaling based on the double Pareto fitting shows 
the power-law exponents for large landslides (α) and small-sized land
slides (β) as 2.24 and 1.07 for the entire landslide inventory, 2.59 and 
1.04 for pre-2005 landslides, and 2.34 and 1.08 for post-2005 landslides 
(Fig. 6a and Table S1 in Supplementary Information S2). These re
lationships are separated by a landslide area of 7,301 m2, 10,808 m2 and 
7,003 m2, respectively (Fig. 6a). The probabilities of largest landslides 
exhibit notable deviations from the best-fitting double Pareto distribu
tions. The frequency of smaller landslides relative to larger landslides 
increases after 2005. In each case, the exponent β was significantly 
smaller than that the average of β values (β = 2.46) reported for many 
regions across the world, whereas the exponent α was found slightly 
larger than the average of α values (α = 1.80) reported worldwide 
(Fig. 6, Table 2, Table S2 in Supplementary Information S2).

4.2. Landslide-covariate relation, susceptibility model development and 
validation

Comparing the distribution of lithology, soil texture, landcover and 
various hillslope geometries across the entire landscape and within 

Fig. 5. Histograms showing frequency distribution of landslide properties: (a) areas, (b) runout lengths, and (c) temporal frequency. Areas are in logarithmic scale. 
Note the frequency of landslides increased from 2005 to 2015, and slightly decreased during 2015–2020. n = number of observation, µ = mean, and σ = stan
dard deviation.
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landslides (Figs. S7 and S8 in Supplementary Information S1) shows that 
landslides are over-represented in sandstone and shale, fine sandy loam 
soil, forest and woodland, moderate elevation (300–550 m), moderate to 
steep slopes (10◦− 30◦), N and NE facing slopes, concave and convex 
slopes, moderate wetness index, high stream power index, moderate to 
high surface roughness (2.5◦− 10◦), and in close proximity to faults, 
streams and roads. The mean decrease in Gini (MDG) values of all the 
covariates included in the model suggest that the major covariates of 
landslides ranked in order of importance from highest to lowest are 
elevation, slope, distance from faults and roads, stream power index, 
geology, surface roughness, soil texture, and distance from streams 
(Fig. S9 in Supplementary Information S1). The significance of other 
covariates, such as aspect, wetness index, curvature, flow accumulation 
and land cover, appears to be relatively minimal. This is well-supported 
by our field observations of a large number of landslides in moderate to 
steep upland slopes underlain by shale and sandstone (also see Figs. S7 

and S8 in Supplementary Information S1).
Overall accuracies and areas under the ROC curve (AUC) of five-fold 

cross-validated models developed using RFE selected covariates (9 out 
of 16) and the optimum hyperparameters (Figs. S9 and S10 in Supple
mentary Information S1, Table S3 in Supplementary Information S2) are 
not significantly different (Table 3). Similarly, validation of the final 
model, which is an average of the cross-validated models by completely 
independent dataset (validation data), also resulted in similar prediction 
performance (Table 4). The overall accuracy represents the ratio of the 
number of landslide and non-landslide observations correctly predicted 
based on a probability threshold of 0.5 (i.e., probability >0.5 in Fig. 8
are landslides) to the total number of assessments. The model truly 
predicted ~94 % of the total landslide and non-landslide cells and 
falsely predicted the remaining 6 % cells (Table 4). The median pre
diction probability values of truly and falsely predicted cells are 
computed as ~0.94 and ~0.65, respectively (Fig. S11 in Supplementary 
Information S1). All these outputs indicate that the models are valid and 
reasonably accurate for mapping landslide susceptibility.

4.3. Landslide susceptibility map

The overall performance of the model, as well as the occurrence of 
historic landslides in high probability zones of the landslide probability 
map (Figs. 8 and 9, Tables 3 and 4), imply that the model predicted most 
of the observed landslides. The distribution of modeled landslide prob
ability across the entire area shows a left-skewed distribution (Fig. 10a) 
with most of the cells having probability <0.2. Similarly, the distribu
tion of probability values within landslides shows a right-skewed 

Fig. 6. Landslide frequency-size scaling based on double Pareto distributions. (a) Probability density estimates (open circles) and best-fitting double Pareto curves 
(solid lines) are shown for pre-2005 (blue), post-2005 (red) and total landslides in the Ozark and Ouachita Mountains. Details of curve fitting statistics and double 
Pareto parameters are provided in Table S1 in Supplementary Information S2. (b) The best-fitting double Pareto distributions for total landslide inventories in this 
study (OA) and other selected regions around the world. The legend acronyms and published β, α, and t parameter values for other regions are listed in Table 2. (c) 
Boxplots showing power-law exponents suggested for small-sized landslides (β) and large-sized landslides (α) across the world (see details in Table S2 in Supple
mentary Information S2). The best-fitting parameters from (a) are shown as open circles. The number of observations, n, the mean, µ, and standard deviation, σ, are 
marked for each exponent.

Table 2 
Parameters of double Pareto distribution of landslide area in highly landslided 
regions across the globe. NA: Not available.

Location α β Rollover 
(t)

Number Reference

Ozark − Ouachita 
(OA)

1.70 1.15 4000 717 This Study

Colorado Rockies, USA 
(CR)

1.10 1.90 1600 735 Regmi et al., 
2014b

United Kingdom (UK) 1.01 1.71 8009 8452 Hurst et al., 
2013

Western Alps, New 
Zealand (WAS)

1.44 4.86 1781 5086 Stark and 
Hovius, 2001

Whataroa, New 
Zealand (NZ)

1.48 3.74 797 3986 Stark and 
Hovius, 2001

Central Range, Taiwan 
(CRT)

1.11 3.22 519 1086 Stark and 
Hovius, 2001

Brooks Peninsula, 
Canada (BP)

1.77 1.29 7380 201 Guthrie and 
Evans, 2004

Loughborough, 
Canada (LC)

1.51 2.21 9301 92 Guthrie and 
Evans, 2004

Clayoquot, Canada 
(CC)

1.54 1.99 5152 1109 Guthrie and 
Evans, 2004

Val di Fassa, Eastern 
Italian Alps (IT)

1.57 2.56 750 NA Frattini and 
Crosta, 2013

Table 3 
Training and testing accuracies and areas under the ROC curves of five-fold 
classification of the final model.

Training Testing

Fold accuracy ROC freq accuracy ROC freq

1 0.934 0.984 11,770 0.935 0.987 2942
2 0.936 0.984 11,770 0.928 0.985 2942
3 0.934 0.985 11,769 0.934 0.983 2943
4 0.934 0.985 11,769 0.935 0.982 2943
5 0.933 0.984 11,770 0.938 0.985 2942
Mean 0.934 0.984 11,770 0.934 0.985 2942
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distribution where most of the landslide cells have probability >0.6. A 
significant number of landslide cells, particularly in lowland gentle 
hillslopes, resulted probability 0.2–0.6. Overall, the landslide proba
bility is low (<0.2) in lowland near-planar landscape, moderate 
(0.2–0.6) in lowland gentle slopes and high (>0.6) in upland slopes 
(Fig. 10a, b and c). The high landslide probability areas in upland slopes 
mostly coincide with concave and convex slopes (Fig. 10d) and hum
mocky or rough surface topography (Fig. 10e). The landslide suscepti
bility map was therefore classified into high, medium and low 
susceptibility (Fig. 11) based on cut off probability values of <0.2, 
0.2–0.6 and >0.6, respectively. The resulting map included most of the 
steep upland slopes underlain by shale and sandstone, zones of topo
graphic convergence (i.e., bedrock hollows and topographic de
pressions), and hillslopes near faults, roads, and streams as highly 
landslide susceptible slopes (Figs. 8, 9, and 11).

5. Discussion

5.1. Landslide frequency and size

We consider that the observed number of landslides is reasonably 
high for the modest topography making up low to moderate relief hills 
separated by wide intervening stream valleys (Figs. 1 and 2, Fig. S1 in 
Supplementary Information S1). The small value of β (power-law 
exponent for small landslides) relative to α (power-law exponent for 
large landslides) and the rollover in the distribution at 7,300 m2 from 
the double Pareto frequency-size plot of total landslides (Fig. 6a) suggest 

that landslides in Oklahoma and Arkansas are dominated by small 
landslides (<7,300 m2 area). In addition, the smaller β exponent 
compared to that of nine landslide inventories from different parts of the 
world (Table 2, Fig. 6b) suggests that the occurrence probability of 
small-sized landslides in our study is relatively high. Our α value is 
slightly larger than that the average of 30 landslide inventories around 
the world (Fig. 6c), however the value is qualitatively similar to that of 
many high-relief and or tectonically active areas (Fig. 6, Table 2, 
Table S2 in Supplementary Information S2), implying that the focus area 
in Oklahoma and Arkansas can host relatively large and damaging 
landslides. For example, the value is larger than that for Colorado 
Rockies, Southern and Western Alps, and Central Range in Taiwan 
(Table 2), and smaller than reported for Northridge, California (Sierra 
Nevada in Fig. 1), Challana Valley in Bolivia (Andes in Fig. 1), Arno 
River Basin and Umbria Marche in Italy, and Nepal Himalayas (Table S2
in Supplementary Information S2).

Undersampling of small-sized landslides is one possible reason for 
the rollover in the power-law relationship. Landslides in this study were 
mapped from time series of high-resolution satellite imagery (5-yr in
terval) and 1 m LiDAR topographic data. Such detailed mapping efforts 
should minimize the effect of undersampling in the landslide probability 
distribution. This can be one of the reasons that our β value is signifi
cantly smaller than that of many of the global landslide inventories. 
Nevertheless, the value of our α is similar to the α values reported for 
highly landslided regions around the world suggesting that the in
ventory exhibits a wide range of landslide sizes. The reason for such a 
wide range of landslide size in our study could be intrinsic to the frac
tured and weathered lithology and long-term weakening of the soil- 
mantled hillslopes by frequent extreme weather, induced seismicity 
and anthropogenic hillslope modification.

5.2. Physical controls and potential mechanism

Landslide-covariate relationships and random forest covariate 
rankings imply that major controls of landslides in this study are: 
moderate to steep upland slopes, fractured and weathered shale and 
sandstone, and presence of soil cover dominated by sandy and silty loam 
in many hillslopes (Figs. 7 and 10, Figs. S7 and S8 in Supplementary 
Information S1). A noteworthy observation is that the average gradient 
of the landslide scarp in our study was ~18◦ with a standard deviation of 
9◦ (Fig. 7a). In high-relief regions, landslides typically have steeper 

Table 4 
Confusion matrix, overall accuracy and area under the curve (AUC) of ROC 
analysis of final model of landslide susceptibility developed using the training 
dataset (70% of the total dataset) and validated by the validation dataset (30% 
of the total population). Predicted classes are landslide absence (0) and presence 
(1).

Model Confusion matrix and errors

0 1 class error accuracy AUC

Training 0 6688 668 0.09 0.94 0.98
(70 % data) 1 211 7145 0.03

Validation 0 2860 96 0.03 0.94 0.98
(30 % data) 1 294 3058 0.09

Fig. 7. Distribution of elevation and slope across the landscape and within landslide scarp. The mean, µ, and standard deviation, σ, values are listed. Note the 
landslides are dominated in moderate to steep slopes (µ = 18◦, σ = 9◦) in upland areas (µ = 425 m, σ = 112 m). The density curve envelopes are developed based on 
kernel density estimation (also shown in Fig. S8 in Supplementary Information S1).
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average gradient (Larsen and Montgomery, 2012; Larsen et al., 2010; 
Regmi et al., 2014b). For example, a study conducted by Regmi et al. 
(2014b) shows that the average gradient of landslides in Colorado 
Rockies is ~26◦ with a standard deviation of 10◦. Similarly, a study of 
more than 15,000 landslides across different regions in eastern Hima
laya by Larsen and Montgomery (2012) shows that the mode of the 
landslide gradient in this region ranges from 34◦− 39◦. The reason for 
landslides on shallower slopes in our study can be attributed to the 
characteristics of the soil cover (i.e. granular soil) and fractured and 
weathered bedrock lithology, which tends to have a smaller angle of 

repose compared to that of resistant bedrocks in high-relief regions. 
Additionally, the landslide susceptibility map shows high susceptibility 
along zones of topographic convergence (Figs. 9 and 10d) where soil 
thickness tends to be relatively high compared to the surroundings 
(Pelletier and Rasmussen, 2009). These areas can be sensitive to slight 
changes in soil–water flux as a function of precipitation as well as 
ground shaking (Lee and Kim, 2020). Furthermore, dissolution of 
limestone, a secondary rock type across the study area (Regmi and 
Walter, 2020b), and tree-root associated subsurface flow paths are some 
of the hillslope environments that can facilitate high infiltration, 

Fig. 8. (a, b) Landslide probability maps developed using training datasets (70% of total). (c) ROC curves developed by assessing the performance of the training 
model by training data (solid line) and validation data (dashed line). The landslide probability was computed by taking the ratios of decision tree votes that suggest a 
cell is a landslide to the sum of all votes.

Fig. 9. Closer look of the landslide probability in: (a) Cavanal Hill, and (b) Sugarloaf Mountain. Polygons are the historic rapid landslides and arrows show soil creep 
areas shown in Fig. S3 in Supplementary Information S1. Note most of these hillslopes are dominated by soil creep.
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conductivity, and building up of pore-water pressure in soil, and, 
thereby, landslides during major storm and seismic events (Easter et al., 
1991; Kay, 1998; Regmi and Walter, 2020b). We thus conclude that 
landsliding in the study area is controlled primarily by the combined 
effect of hillslope geometry, soil cover and underlying bedrock lithology.

Another notable observation is that the frequency of landslides 
(Fig. 5c and 6a) has increased significantly since 2005 (Fig. 5c). We 
believe that the increased induced seismicity in nearby north-central 
Oklahoma (Regmi and Walter, 2020a; Walter et al., 2020) and the 
frequent intense precipitation, such as the record precipitation of 2015 
(Oklahoma Climatological Survey, 2018), are the major reasons for such 

a change in the rate of landsliding. The increased seismic shaking can 
contribute inelastic strain or granular energy that can cause the long- 
term weakening and slow deformation (i.e., creeping soil) of the soil- 
mantled hillslopes (Delchiaro et al., 2023). Eventually, in concert with 
precipitation or other triggering forces, this weakening can trigger 
landslides. Increased anthropogenic activities, such as urbanization, 
infrastructure development and land use/landcover change (Lopez 
et al., 2008; Phillips et al., 2020; Regmi and Walter, 2020a; Tappe et al., 
2004) are additional possible factors responsible for triggering recent 
landslides in the study area. These changes in triggering forces can 
significantly influence the stability thresholds of previously stable 

Fig. 10. Distribution of landslide probability values: (a) across the study area and within the landslide, and (b, c, d, e) within the classes of four hillslope geometries 
including elevation, slope, curvature and surface roughness. LS: Low Susceptibility, MS: Medium Susceptibility, HS: High Susceptibility.

Fig. 11. A landslide susceptibility map developed by classifying landslide probability map (Fig. 8a). High, medium, and low susceptibility zones were classified as 
landslide probability > 0.6, 0.2–0.6 and < 0.2, respectively. The percentage within the bracket indicates the area coverage.
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hillslopes (i.e. gentle slopes) or slowly moving slopes (soil creep) 
(Ferdowsi et al., 2018; Roering et al., 2001). These characteristics imply 
that the area would likely be more susceptible to landslides in the future 
and highlight the requirement of detailed landslide susceptibility map
ping, continuous monitoring of highly unstable hillslopes, and imple
mentation of landslide mitigation efforts. These types of low-relief 
landscapes have often been overlooked and less well-studied. As a result, 
potential changes in landslide susceptibility have gone unstudied. In 
other regions these types of shifts may be driven by interannual to 
decadal changes in urbanization and land use change, regional climate 
change, or shifts between seismic quiescence to high activity.

5.3. Landslide susceptibility map

The landslide susceptibility map developed here is based on the static 
covariates only, yet it successfully shows the locations of observed 
landslides within the high susceptibility zones. If the characteristics of 
input covariates and the landslide triggering forces do not change 
significantly in the future, it is very likely that future landslides would 
occur in areas of high susceptibility, as mapped by this model. The 
mapping performance (~94 %) of our model (Fig. 8, Tables 3 and 4) is 
satisfactory and as good as well-performing models implemented 
worldwide (Nefeslioglu et al., 2008; Neuhäuser and Terhorst, 2007; 
Regmi et al., 2014a). The high performance of the model could simply 
reflect the large number of landslide observations (717 landslides) and 
sampling landslide data from entire landslide scarps. Indeed, sampling 
from entire scarps was found better for mapping landslide susceptibility 
(Dou et al., 2020; Regmi et al., 2014a), potentially because scarp sam
pling can significantly reduce the variability in input covariate values, 
generate enough data required for the modeling and also introduce the 
role of landslide size in landslide susceptibility mapping.

The random forest workflow demonstrates a robust first-order 
identification of hazardous areas. Thus, the algorithm can be used as a 
tool to identify landslide sensitive areas for further detailed investiga
tion, such as for continuous monitoring of high susceptibility regions 
implementing time-series remote sensing and geophysical techniques. 
Such an application would help us improve the model and further 
explore the feedback-response and potentially identify nucleation 
mechanisms of landslides in these hillslopes during extreme triggering 
events. The approach is data-driven supervised learning that can 
incorporate a large number of spatially continuous and categorical 
covariates in predicting landslides. In this view, the performance of the 
model can further be improved by including additional covariates, such 
as hillslope length and relief (Grieve et al., 2016), soil depth (Ochsner 
et al., 2019; Pelletier and Rasmussen, 2009), and landforms (Evans, 
2012) as well as dynamic variables including soil moisture and precip
itation (NASA, 2021). In addition, the model can be updated and 
improved with more landslides and higher resolution datasets, such as 
geology and soil physiochemical properties that may be available in the 
future.

6. Conclusions

Our work suggests that soil-mantled modest topography in an 
intraplate setting has the potential to occur landslides at rates and sizes 
that are similar to that of many tectonically active and high-relief re
gions. The increase in frequency of small-sized landslides after 2005, 
coinciding with Oklahoma’s increased occurrence of low-magnitude 
induced sciesmity and extereme storm events, indicates that the 
changes in the rates and/or magnitude of triggering mechanisms influ
ence the frequency and size distribution of landslides. Spatial and tem
poral frequency computed for this study imply landslides will occur 
frequently in the study area. The random forest approach and covariates 
employed here provide reasonable estimates of landslide susceptibility 
with performance as good as most of the qualitative and quantitative or 
statistical well-performed models implemented worldwide and 

highlights the effectiveness of the approach in mapping landslides. The 
model suggests elevation or relief, slope steepness, stream power, li
thology, and soil characteristics are some of the major factors that play a 
significant role in the occurrence of landslides in the Ozark and Ouachita 
Mountains. Both observed and predicted landslides are found both in 
upland and lowland environments, particularly in steep slopes, zones of 
topographic convergence, shale and sandstone, and near roads and 
streams. The results obtained here, including the susceptibility map, 
quantification of each factor’s contribution towards causing landslides, 
and landslide frequency-size characteristics are a vital dataset for hill
slope monitoring, landslide mitigation, and slope management. These 
observations can also provide first-order insights on hillslope processes 
in low-relief intraplate regions.
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